| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > distgp | Structured version Visualization version GIF version | ||
| Description: Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| distgp.1 | ⊢ 𝐵 = (Base‘𝐺) |
| distgp.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
| Ref | Expression |
|---|---|
| distgp | ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ Grp) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 = 𝒫 𝐵) | |
| 3 | distgp.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 3 | fvexi 6836 | . . . . 5 ⊢ 𝐵 ∈ V |
| 5 | distopon 22912 | . . . . 5 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ (TopOn‘𝐵)) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ 𝒫 𝐵 ∈ (TopOn‘𝐵) |
| 7 | 2, 6 | eqeltrdi 2839 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 ∈ (TopOn‘𝐵)) |
| 8 | distgp.2 | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 9 | 3, 8 | istps 22849 | . . 3 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵)) |
| 10 | 7, 9 | sylibr 234 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopSp) |
| 11 | eqid 2731 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 12 | 3, 11 | grpsubf 18932 | . . . . 5 ⊢ (𝐺 ∈ Grp → (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
| 14 | 4, 4 | xpex 7686 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
| 15 | 4, 14 | elmap 8795 | . . . 4 ⊢ ((-g‘𝐺) ∈ (𝐵 ↑m (𝐵 × 𝐵)) ↔ (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
| 16 | 13, 15 | sylibr 234 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺) ∈ (𝐵 ↑m (𝐵 × 𝐵))) |
| 17 | 2, 2 | oveq12d 7364 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = (𝒫 𝐵 ×t 𝒫 𝐵)) |
| 18 | txdis 23547 | . . . . . . 7 ⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵)) | |
| 19 | 4, 4, 18 | mp2an 692 | . . . . . 6 ⊢ (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵) |
| 20 | 17, 19 | eqtrdi 2782 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = 𝒫 (𝐵 × 𝐵)) |
| 21 | 20 | oveq1d 7361 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝒫 (𝐵 × 𝐵) Cn 𝐽)) |
| 22 | cndis 23206 | . . . . 5 ⊢ (((𝐵 × 𝐵) ∈ V ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵 ↑m (𝐵 × 𝐵))) | |
| 23 | 14, 7, 22 | sylancr 587 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵 ↑m (𝐵 × 𝐵))) |
| 24 | 21, 23 | eqtrd 2766 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝐵 ↑m (𝐵 × 𝐵))) |
| 25 | 16, 24 | eleqtrrd 2834 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 26 | 8, 11 | istgp2 24006 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
| 27 | 1, 10, 25, 26 | syl3anbrc 1344 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4547 × cxp 5612 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Basecbs 17120 TopOpenctopn 17325 Grpcgrp 18846 -gcsg 18848 TopOnctopon 22825 TopSpctps 22847 Cn ccn 23139 ×t ctx 23475 TopGrpctgp 23986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-0g 17345 df-topgen 17347 df-plusf 18547 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cn 23142 df-cnp 23143 df-tx 23477 df-tmd 23987 df-tgp 23988 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |