| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > distgp | Structured version Visualization version GIF version | ||
| Description: Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| distgp.1 | ⊢ 𝐵 = (Base‘𝐺) |
| distgp.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
| Ref | Expression |
|---|---|
| distgp | ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ Grp) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 = 𝒫 𝐵) | |
| 3 | distgp.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 3 | fvexi 6895 | . . . . 5 ⊢ 𝐵 ∈ V |
| 5 | distopon 22940 | . . . . 5 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ (TopOn‘𝐵)) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ 𝒫 𝐵 ∈ (TopOn‘𝐵) |
| 7 | 2, 6 | eqeltrdi 2843 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 ∈ (TopOn‘𝐵)) |
| 8 | distgp.2 | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 9 | 3, 8 | istps 22877 | . . 3 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵)) |
| 10 | 7, 9 | sylibr 234 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopSp) |
| 11 | eqid 2736 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 12 | 3, 11 | grpsubf 19007 | . . . . 5 ⊢ (𝐺 ∈ Grp → (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
| 14 | 4, 4 | xpex 7752 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
| 15 | 4, 14 | elmap 8890 | . . . 4 ⊢ ((-g‘𝐺) ∈ (𝐵 ↑m (𝐵 × 𝐵)) ↔ (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
| 16 | 13, 15 | sylibr 234 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺) ∈ (𝐵 ↑m (𝐵 × 𝐵))) |
| 17 | 2, 2 | oveq12d 7428 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = (𝒫 𝐵 ×t 𝒫 𝐵)) |
| 18 | txdis 23575 | . . . . . . 7 ⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵)) | |
| 19 | 4, 4, 18 | mp2an 692 | . . . . . 6 ⊢ (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵) |
| 20 | 17, 19 | eqtrdi 2787 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = 𝒫 (𝐵 × 𝐵)) |
| 21 | 20 | oveq1d 7425 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝒫 (𝐵 × 𝐵) Cn 𝐽)) |
| 22 | cndis 23234 | . . . . 5 ⊢ (((𝐵 × 𝐵) ∈ V ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵 ↑m (𝐵 × 𝐵))) | |
| 23 | 14, 7, 22 | sylancr 587 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵 ↑m (𝐵 × 𝐵))) |
| 24 | 21, 23 | eqtrd 2771 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝐵 ↑m (𝐵 × 𝐵))) |
| 25 | 16, 24 | eleqtrrd 2838 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 26 | 8, 11 | istgp2 24034 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
| 27 | 1, 10, 25, 26 | syl3anbrc 1344 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 𝒫 cpw 4580 × cxp 5657 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 Basecbs 17233 TopOpenctopn 17440 Grpcgrp 18921 -gcsg 18923 TopOnctopon 22853 TopSpctps 22875 Cn ccn 23167 ×t ctx 23503 TopGrpctgp 24014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-map 8847 df-0g 17460 df-topgen 17462 df-plusf 18622 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cn 23170 df-cnp 23171 df-tx 23505 df-tmd 24015 df-tgp 24016 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |