MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distgp Structured version   Visualization version   GIF version

Theorem distgp 22704
Description: Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
distgp.1 𝐵 = (Base‘𝐺)
distgp.2 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
distgp ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp)

Proof of Theorem distgp
StepHypRef Expression
1 simpl 486 . 2 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ Grp)
2 simpr 488 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 = 𝒫 𝐵)
3 distgp.1 . . . . . 6 𝐵 = (Base‘𝐺)
43fvexi 6659 . . . . 5 𝐵 ∈ V
5 distopon 21602 . . . . 5 (𝐵 ∈ V → 𝒫 𝐵 ∈ (TopOn‘𝐵))
64, 5ax-mp 5 . . . 4 𝒫 𝐵 ∈ (TopOn‘𝐵)
72, 6eqeltrdi 2898 . . 3 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 ∈ (TopOn‘𝐵))
8 distgp.2 . . . 4 𝐽 = (TopOpen‘𝐺)
93, 8istps 21539 . . 3 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
107, 9sylibr 237 . 2 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopSp)
11 eqid 2798 . . . . . 6 (-g𝐺) = (-g𝐺)
123, 11grpsubf 18170 . . . . 5 (𝐺 ∈ Grp → (-g𝐺):(𝐵 × 𝐵)⟶𝐵)
1312adantr 484 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g𝐺):(𝐵 × 𝐵)⟶𝐵)
144, 4xpex 7456 . . . . 5 (𝐵 × 𝐵) ∈ V
154, 14elmap 8418 . . . 4 ((-g𝐺) ∈ (𝐵m (𝐵 × 𝐵)) ↔ (-g𝐺):(𝐵 × 𝐵)⟶𝐵)
1613, 15sylibr 237 . . 3 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g𝐺) ∈ (𝐵m (𝐵 × 𝐵)))
172, 2oveq12d 7153 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = (𝒫 𝐵 ×t 𝒫 𝐵))
18 txdis 22237 . . . . . . 7 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵))
194, 4, 18mp2an 691 . . . . . 6 (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵)
2017, 19eqtrdi 2849 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = 𝒫 (𝐵 × 𝐵))
2120oveq1d 7150 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝒫 (𝐵 × 𝐵) Cn 𝐽))
22 cndis 21896 . . . . 5 (((𝐵 × 𝐵) ∈ V ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵m (𝐵 × 𝐵)))
2314, 7, 22sylancr 590 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵m (𝐵 × 𝐵)))
2421, 23eqtrd 2833 . . 3 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝐵m (𝐵 × 𝐵)))
2516, 24eleqtrrd 2893 . 2 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
268, 11istgp2 22696 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
271, 10, 25, 26syl3anbrc 1340 1 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  𝒫 cpw 4497   × cxp 5517  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  Basecbs 16475  TopOpenctopn 16687  Grpcgrp 18095  -gcsg 18097  TopOnctopon 21515  TopSpctps 21537   Cn ccn 21829   ×t ctx 22165  TopGrpctgp 22676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-0g 16707  df-topgen 16709  df-plusf 17843  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-tx 22167  df-tmd 22677  df-tgp 22678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator