| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > distgp | Structured version Visualization version GIF version | ||
| Description: Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| distgp.1 | ⊢ 𝐵 = (Base‘𝐺) |
| distgp.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
| Ref | Expression |
|---|---|
| distgp | ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ Grp) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 = 𝒫 𝐵) | |
| 3 | distgp.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 3 | fvexi 6855 | . . . . 5 ⊢ 𝐵 ∈ V |
| 5 | distopon 22919 | . . . . 5 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ (TopOn‘𝐵)) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ 𝒫 𝐵 ∈ (TopOn‘𝐵) |
| 7 | 2, 6 | eqeltrdi 2836 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 ∈ (TopOn‘𝐵)) |
| 8 | distgp.2 | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 9 | 3, 8 | istps 22856 | . . 3 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵)) |
| 10 | 7, 9 | sylibr 234 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopSp) |
| 11 | eqid 2729 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 12 | 3, 11 | grpsubf 18935 | . . . . 5 ⊢ (𝐺 ∈ Grp → (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
| 14 | 4, 4 | xpex 7710 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
| 15 | 4, 14 | elmap 8822 | . . . 4 ⊢ ((-g‘𝐺) ∈ (𝐵 ↑m (𝐵 × 𝐵)) ↔ (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
| 16 | 13, 15 | sylibr 234 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺) ∈ (𝐵 ↑m (𝐵 × 𝐵))) |
| 17 | 2, 2 | oveq12d 7388 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = (𝒫 𝐵 ×t 𝒫 𝐵)) |
| 18 | txdis 23554 | . . . . . . 7 ⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵)) | |
| 19 | 4, 4, 18 | mp2an 692 | . . . . . 6 ⊢ (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵) |
| 20 | 17, 19 | eqtrdi 2780 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = 𝒫 (𝐵 × 𝐵)) |
| 21 | 20 | oveq1d 7385 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝒫 (𝐵 × 𝐵) Cn 𝐽)) |
| 22 | cndis 23213 | . . . . 5 ⊢ (((𝐵 × 𝐵) ∈ V ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵 ↑m (𝐵 × 𝐵))) | |
| 23 | 14, 7, 22 | sylancr 587 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵 ↑m (𝐵 × 𝐵))) |
| 24 | 21, 23 | eqtrd 2764 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝐵 ↑m (𝐵 × 𝐵))) |
| 25 | 16, 24 | eleqtrrd 2831 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 26 | 8, 11 | istgp2 24013 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
| 27 | 1, 10, 25, 26 | syl3anbrc 1344 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 𝒫 cpw 4559 × cxp 5629 ⟶wf 6496 ‘cfv 6500 (class class class)co 7370 ↑m cmap 8777 Basecbs 17157 TopOpenctopn 17362 Grpcgrp 18849 -gcsg 18851 TopOnctopon 22832 TopSpctps 22854 Cn ccn 23146 ×t ctx 23482 TopGrpctgp 23993 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-1st 7948 df-2nd 7949 df-map 8779 df-0g 17382 df-topgen 17384 df-plusf 18550 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-grp 18852 df-minusg 18853 df-sbg 18854 df-top 22816 df-topon 22833 df-topsp 22855 df-bases 22868 df-cn 23149 df-cnp 23150 df-tx 23484 df-tmd 23994 df-tgp 23995 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |