MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distgp Structured version   Visualization version   GIF version

Theorem distgp 23158
Description: Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
distgp.1 𝐵 = (Base‘𝐺)
distgp.2 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
distgp ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp)

Proof of Theorem distgp
StepHypRef Expression
1 simpl 482 . 2 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ Grp)
2 simpr 484 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 = 𝒫 𝐵)
3 distgp.1 . . . . . 6 𝐵 = (Base‘𝐺)
43fvexi 6770 . . . . 5 𝐵 ∈ V
5 distopon 22055 . . . . 5 (𝐵 ∈ V → 𝒫 𝐵 ∈ (TopOn‘𝐵))
64, 5ax-mp 5 . . . 4 𝒫 𝐵 ∈ (TopOn‘𝐵)
72, 6eqeltrdi 2847 . . 3 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 ∈ (TopOn‘𝐵))
8 distgp.2 . . . 4 𝐽 = (TopOpen‘𝐺)
93, 8istps 21991 . . 3 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
107, 9sylibr 233 . 2 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopSp)
11 eqid 2738 . . . . . 6 (-g𝐺) = (-g𝐺)
123, 11grpsubf 18569 . . . . 5 (𝐺 ∈ Grp → (-g𝐺):(𝐵 × 𝐵)⟶𝐵)
1312adantr 480 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g𝐺):(𝐵 × 𝐵)⟶𝐵)
144, 4xpex 7581 . . . . 5 (𝐵 × 𝐵) ∈ V
154, 14elmap 8617 . . . 4 ((-g𝐺) ∈ (𝐵m (𝐵 × 𝐵)) ↔ (-g𝐺):(𝐵 × 𝐵)⟶𝐵)
1613, 15sylibr 233 . . 3 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g𝐺) ∈ (𝐵m (𝐵 × 𝐵)))
172, 2oveq12d 7273 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = (𝒫 𝐵 ×t 𝒫 𝐵))
18 txdis 22691 . . . . . . 7 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵))
194, 4, 18mp2an 688 . . . . . 6 (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵)
2017, 19eqtrdi 2795 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = 𝒫 (𝐵 × 𝐵))
2120oveq1d 7270 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝒫 (𝐵 × 𝐵) Cn 𝐽))
22 cndis 22350 . . . . 5 (((𝐵 × 𝐵) ∈ V ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵m (𝐵 × 𝐵)))
2314, 7, 22sylancr 586 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵m (𝐵 × 𝐵)))
2421, 23eqtrd 2778 . . 3 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝐵m (𝐵 × 𝐵)))
2516, 24eleqtrrd 2842 . 2 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
268, 11istgp2 23150 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
271, 10, 25, 26syl3anbrc 1341 1 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  𝒫 cpw 4530   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Basecbs 16840  TopOpenctopn 17049  Grpcgrp 18492  -gcsg 18494  TopOnctopon 21967  TopSpctps 21989   Cn ccn 22283   ×t ctx 22619  TopGrpctgp 23130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-0g 17069  df-topgen 17071  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cn 22286  df-cnp 22287  df-tx 22621  df-tmd 23131  df-tgp 23132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator