Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  distgp Structured version   Visualization version   GIF version

Theorem distgp 22707
 Description: Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
distgp.1 𝐵 = (Base‘𝐺)
distgp.2 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
distgp ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp)

Proof of Theorem distgp
StepHypRef Expression
1 simpl 486 . 2 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ Grp)
2 simpr 488 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 = 𝒫 𝐵)
3 distgp.1 . . . . . 6 𝐵 = (Base‘𝐺)
43fvexi 6675 . . . . 5 𝐵 ∈ V
5 distopon 21605 . . . . 5 (𝐵 ∈ V → 𝒫 𝐵 ∈ (TopOn‘𝐵))
64, 5ax-mp 5 . . . 4 𝒫 𝐵 ∈ (TopOn‘𝐵)
72, 6eqeltrdi 2924 . . 3 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 ∈ (TopOn‘𝐵))
8 distgp.2 . . . 4 𝐽 = (TopOpen‘𝐺)
93, 8istps 21542 . . 3 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
107, 9sylibr 237 . 2 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopSp)
11 eqid 2824 . . . . . 6 (-g𝐺) = (-g𝐺)
123, 11grpsubf 18178 . . . . 5 (𝐺 ∈ Grp → (-g𝐺):(𝐵 × 𝐵)⟶𝐵)
1312adantr 484 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g𝐺):(𝐵 × 𝐵)⟶𝐵)
144, 4xpex 7470 . . . . 5 (𝐵 × 𝐵) ∈ V
154, 14elmap 8431 . . . 4 ((-g𝐺) ∈ (𝐵m (𝐵 × 𝐵)) ↔ (-g𝐺):(𝐵 × 𝐵)⟶𝐵)
1613, 15sylibr 237 . . 3 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g𝐺) ∈ (𝐵m (𝐵 × 𝐵)))
172, 2oveq12d 7167 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = (𝒫 𝐵 ×t 𝒫 𝐵))
18 txdis 22240 . . . . . . 7 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵))
194, 4, 18mp2an 691 . . . . . 6 (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵)
2017, 19syl6eq 2875 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = 𝒫 (𝐵 × 𝐵))
2120oveq1d 7164 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝒫 (𝐵 × 𝐵) Cn 𝐽))
22 cndis 21899 . . . . 5 (((𝐵 × 𝐵) ∈ V ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵m (𝐵 × 𝐵)))
2314, 7, 22sylancr 590 . . . 4 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵m (𝐵 × 𝐵)))
2421, 23eqtrd 2859 . . 3 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝐵m (𝐵 × 𝐵)))
2516, 24eleqtrrd 2919 . 2 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
268, 11istgp2 22699 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
271, 10, 25, 26syl3anbrc 1340 1 ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  Vcvv 3480  𝒫 cpw 4522   × cxp 5540  ⟶wf 6339  ‘cfv 6343  (class class class)co 7149   ↑m cmap 8402  Basecbs 16483  TopOpenctopn 16695  Grpcgrp 18103  -gcsg 18105  TopOnctopon 21518  TopSpctps 21540   Cn ccn 21832   ×t ctx 22168  TopGrpctgp 22679 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-map 8404  df-0g 16715  df-topgen 16717  df-plusf 17851  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cn 21835  df-cnp 21836  df-tx 22170  df-tmd 22680  df-tgp 22681 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator