![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsr2 | Structured version Visualization version GIF version |
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
dvdsr.1 | โข ๐ต = (Baseโ๐ ) |
dvdsr.2 | โข โฅ = (โฅrโ๐ ) |
dvdsr.3 | โข ยท = (.rโ๐ ) |
Ref | Expression |
---|---|
dvdsr2 | โข (๐ โ ๐ต โ (๐ โฅ ๐ โ โ๐ง โ ๐ต (๐ง ยท ๐) = ๐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsr.1 | . . 3 โข ๐ต = (Baseโ๐ ) | |
2 | dvdsr.2 | . . 3 โข โฅ = (โฅrโ๐ ) | |
3 | dvdsr.3 | . . 3 โข ยท = (.rโ๐ ) | |
4 | 1, 2, 3 | dvdsr 20175 | . 2 โข (๐ โฅ ๐ โ (๐ โ ๐ต โง โ๐ง โ ๐ต (๐ง ยท ๐) = ๐)) |
5 | 4 | baib 536 | 1 โข (๐ โ ๐ต โ (๐ โฅ ๐ โ โ๐ง โ ๐ต (๐ง ยท ๐) = ๐)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 = wceq 1541 โ wcel 2106 โwrex 3070 class class class wbr 5148 โcfv 6543 (class class class)co 7408 Basecbs 17143 .rcmulr 17197 โฅrcdsr 20167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-dvdsr 20170 |
This theorem is referenced by: dvdsr01 20184 dvdsr02 20185 unitgrp 20196 rhmdvdsr 20286 rspsn 20891 znunit 21118 dvdsq1p 25677 isdrng4 32390 |
Copyright terms: Public domain | W3C validator |