MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsr2 Structured version   Visualization version   GIF version

Theorem dvdsr2 19917
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsr2 (𝑋𝐵 → (𝑋 𝑌 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
Distinct variable groups:   𝑧,𝐵   𝑧,𝑋   𝑧,𝑌   𝑧,𝑅   𝑧, ·
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsr2
StepHypRef Expression
1 dvdsr.1 . . 3 𝐵 = (Base‘𝑅)
2 dvdsr.2 . . 3 = (∥r𝑅)
3 dvdsr.3 . . 3 · = (.r𝑅)
41, 2, 3dvdsr 19916 . 2 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
54baib 535 1 (𝑋𝐵 → (𝑋 𝑌 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1537  wcel 2101  wrex 3068   class class class wbr 5077  cfv 6447  (class class class)co 7295  Basecbs 16940  .rcmulr 16991  rcdsr 19908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fv 6455  df-ov 7298  df-dvdsr 19911
This theorem is referenced by:  dvdsr01  19925  dvdsr02  19926  unitgrp  19937  rspsn  20553  znunit  20799  dvdsq1p  25353  rhmdvdsr  31545
  Copyright terms: Public domain W3C validator