MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsr2 Structured version   Visualization version   GIF version

Theorem dvdsr2 20290
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsr2 (𝑋𝐵 → (𝑋 𝑌 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
Distinct variable groups:   𝑧,𝐵   𝑧,𝑋   𝑧,𝑌   𝑧,𝑅   𝑧, ·
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsr2
StepHypRef Expression
1 dvdsr.1 . . 3 𝐵 = (Base‘𝑅)
2 dvdsr.2 . . 3 = (∥r𝑅)
3 dvdsr.3 . . 3 · = (.r𝑅)
41, 2, 3dvdsr 20289 . 2 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
54baib 535 1 (𝑋𝐵 → (𝑋 𝑌 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  .rcmulr 17169  rcdsr 20281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-dvdsr 20284
This theorem is referenced by:  dvdsr01  20298  dvdsr02  20299  unitgrp  20310  rhmdvdsr  20432  rspsn  21279  znunit  21509  dvdsq1p  26115  isdrng4  33305  rprmasso2  33535
  Copyright terms: Public domain W3C validator