Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdsr2 | Structured version Visualization version GIF version |
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) |
dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) |
dvdsr.3 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
dvdsr2 | ⊢ (𝑋 ∈ 𝐵 → (𝑋 ∥ 𝑌 ↔ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsr.1 | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | dvdsr.2 | . . 3 ⊢ ∥ = (∥r‘𝑅) | |
3 | dvdsr.3 | . . 3 ⊢ · = (.r‘𝑅) | |
4 | 1, 2, 3 | dvdsr 19916 | . 2 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
5 | 4 | baib 535 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑋 ∥ 𝑌 ↔ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1537 ∈ wcel 2101 ∃wrex 3068 class class class wbr 5077 ‘cfv 6447 (class class class)co 7295 Basecbs 16940 .rcmulr 16991 ∥rcdsr 19908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fv 6455 df-ov 7298 df-dvdsr 19911 |
This theorem is referenced by: dvdsr01 19925 dvdsr02 19926 unitgrp 19937 rspsn 20553 znunit 20799 dvdsq1p 25353 rhmdvdsr 31545 |
Copyright terms: Public domain | W3C validator |