MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsq1p Structured version   Visualization version   GIF version

Theorem dvdsq1p 26120
Description: Divisibility in a polynomial ring is witnessed by the quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
dvdsq1p.p 𝑃 = (Poly1𝑅)
dvdsq1p.d = (∥r𝑃)
dvdsq1p.b 𝐵 = (Base‘𝑃)
dvdsq1p.c 𝐶 = (Unic1p𝑅)
dvdsq1p.t · = (.r𝑃)
dvdsq1p.q 𝑄 = (quot1p𝑅)
Assertion
Ref Expression
dvdsq1p ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))

Proof of Theorem dvdsq1p
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 dvdsq1p.p . . . . . 6 𝑃 = (Poly1𝑅)
2 dvdsq1p.b . . . . . 6 𝐵 = (Base‘𝑃)
3 dvdsq1p.c . . . . . 6 𝐶 = (Unic1p𝑅)
41, 2, 3uc1pcl 26101 . . . . 5 (𝐺𝐶𝐺𝐵)
543ad2ant3 1135 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
6 dvdsq1p.d . . . . 5 = (∥r𝑃)
7 dvdsq1p.t . . . . 5 · = (.r𝑃)
82, 6, 7dvdsr2 20323 . . . 4 (𝐺𝐵 → (𝐺 𝐹 ↔ ∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹))
95, 8syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹 ↔ ∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹))
10 eqcom 2742 . . . . 5 ((𝑞 · 𝐺) = 𝐹𝐹 = (𝑞 · 𝐺))
11 simprr 772 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝐹 = (𝑞 · 𝐺))
12 simprl 770 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝑞𝐵)
13 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑅 ∈ Ring)
141ply1ring 22183 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1513, 14syl 17 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑃 ∈ Ring)
16 ringgrp 20198 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
1715, 16syl 17 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑃 ∈ Grp)
18 simpl2 1193 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝐹𝐵)
19 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑞𝐵)
205adantr 480 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝐺𝐵)
212, 7ringcl 20210 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Ring ∧ 𝑞𝐵𝐺𝐵) → (𝑞 · 𝐺) ∈ 𝐵)
2215, 19, 20, 21syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝑞 · 𝐺) ∈ 𝐵)
23 eqid 2735 . . . . . . . . . . . . . . . 16 (0g𝑃) = (0g𝑃)
24 eqid 2735 . . . . . . . . . . . . . . . 16 (-g𝑃) = (-g𝑃)
252, 23, 24grpsubeq0 19009 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝑞 · 𝐺) ∈ 𝐵) → ((𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃) ↔ 𝐹 = (𝑞 · 𝐺)))
2617, 18, 22, 25syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → ((𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃) ↔ 𝐹 = (𝑞 · 𝐺)))
2726biimprd 248 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝐹 = (𝑞 · 𝐺) → (𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃)))
2827impr 454 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃))
2928fveq2d 6880 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) = ((deg1𝑅)‘(0g𝑃)))
30 simpl1 1192 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝑅 ∈ Ring)
31 eqid 2735 . . . . . . . . . . . . 13 (deg1𝑅) = (deg1𝑅)
3231, 1, 23deg1z 26044 . . . . . . . . . . . 12 (𝑅 ∈ Ring → ((deg1𝑅)‘(0g𝑃)) = -∞)
3330, 32syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((deg1𝑅)‘(0g𝑃)) = -∞)
3429, 33eqtrd 2770 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) = -∞)
3531, 3uc1pdeg 26105 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐺𝐶) → ((deg1𝑅)‘𝐺) ∈ ℕ0)
36353adant2 1131 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((deg1𝑅)‘𝐺) ∈ ℕ0)
3736nn0red 12563 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((deg1𝑅)‘𝐺) ∈ ℝ)
3837adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((deg1𝑅)‘𝐺) ∈ ℝ)
3938mnfltd 13140 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → -∞ < ((deg1𝑅)‘𝐺))
4034, 39eqbrtrd 5141 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < ((deg1𝑅)‘𝐺))
41 dvdsq1p.q . . . . . . . . . . 11 𝑄 = (quot1p𝑅)
4241, 1, 2, 31, 24, 7, 3q1peqb 26113 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑞𝐵 ∧ ((deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < ((deg1𝑅)‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑞))
4342adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((𝑞𝐵 ∧ ((deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < ((deg1𝑅)‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑞))
4412, 40, 43mpbi2and 712 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (𝐹𝑄𝐺) = 𝑞)
4544oveq1d 7420 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((𝐹𝑄𝐺) · 𝐺) = (𝑞 · 𝐺))
4611, 45eqtr4d 2773 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝐹 = ((𝐹𝑄𝐺) · 𝐺))
4746expr 456 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝐹 = (𝑞 · 𝐺) → 𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
4810, 47biimtrid 242 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → ((𝑞 · 𝐺) = 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
4948rexlimdva 3141 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
509, 49sylbid 240 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
5141, 1, 2, 3q1pcl 26114 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) ∈ 𝐵)
522, 6, 7dvdsrmul 20324 . . . 4 ((𝐺𝐵 ∧ (𝐹𝑄𝐺) ∈ 𝐵) → 𝐺 ((𝐹𝑄𝐺) · 𝐺))
535, 51, 52syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺 ((𝐹𝑄𝐺) · 𝐺))
54 breq2 5123 . . 3 (𝐹 = ((𝐹𝑄𝐺) · 𝐺) → (𝐺 𝐹𝐺 ((𝐹𝑄𝐺) · 𝐺)))
5553, 54syl5ibrcom 247 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹 = ((𝐹𝑄𝐺) · 𝐺) → 𝐺 𝐹))
5650, 55impbid 212 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  cr 11128  -∞cmnf 11267   < clt 11269  0cn0 12501  Basecbs 17228  .rcmulr 17272  0gc0g 17453  Grpcgrp 18916  -gcsg 18918  Ringcrg 20193  rcdsr 20314  Poly1cpl1 22112  deg1cdg1 26011  Unic1pcuc1p 26084  quot1pcq1p 26085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-lmod 20819  df-lss 20889  df-cnfld 21316  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-mdeg 26012  df-deg1 26013  df-uc1p 26089  df-q1p 26090
This theorem is referenced by:  dvdsr1p  26121  fta1glem1  26125  fta1glem2  26126  r1pcyc  33616
  Copyright terms: Public domain W3C validator