Step | Hyp | Ref
| Expression |
1 | | dvdsq1p.p |
. . . . . 6
⊢ 𝑃 = (Poly1‘𝑅) |
2 | | dvdsq1p.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑃) |
3 | | dvdsq1p.c |
. . . . . 6
⊢ 𝐶 =
(Unic1p‘𝑅) |
4 | 1, 2, 3 | uc1pcl 25213 |
. . . . 5
⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
5 | 4 | 3ad2ant3 1133 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∈ 𝐵) |
6 | | dvdsq1p.d |
. . . . 5
⊢ ∥ =
(∥r‘𝑃) |
7 | | dvdsq1p.t |
. . . . 5
⊢ · =
(.r‘𝑃) |
8 | 2, 6, 7 | dvdsr2 19804 |
. . . 4
⊢ (𝐺 ∈ 𝐵 → (𝐺 ∥ 𝐹 ↔ ∃𝑞 ∈ 𝐵 (𝑞 · 𝐺) = 𝐹)) |
9 | 5, 8 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐺 ∥ 𝐹 ↔ ∃𝑞 ∈ 𝐵 (𝑞 · 𝐺) = 𝐹)) |
10 | | eqcom 2745 |
. . . . 5
⊢ ((𝑞 · 𝐺) = 𝐹 ↔ 𝐹 = (𝑞 · 𝐺)) |
11 | | simprr 769 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ (𝑞 ∈ 𝐵 ∧ 𝐹 = (𝑞 · 𝐺))) → 𝐹 = (𝑞 · 𝐺)) |
12 | | simprl 767 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ (𝑞 ∈ 𝐵 ∧ 𝐹 = (𝑞 · 𝐺))) → 𝑞 ∈ 𝐵) |
13 | | simpl1 1189 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑞 ∈ 𝐵) → 𝑅 ∈ Ring) |
14 | 1 | ply1ring 21329 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
15 | 13, 14 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑞 ∈ 𝐵) → 𝑃 ∈ Ring) |
16 | | ringgrp 19703 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑞 ∈ 𝐵) → 𝑃 ∈ Grp) |
18 | | simpl2 1190 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑞 ∈ 𝐵) → 𝐹 ∈ 𝐵) |
19 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑞 ∈ 𝐵) → 𝑞 ∈ 𝐵) |
20 | 5 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑞 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
21 | 2, 7 | ringcl 19715 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ Ring ∧ 𝑞 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑞 · 𝐺) ∈ 𝐵) |
22 | 15, 19, 20, 21 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑞 ∈ 𝐵) → (𝑞 · 𝐺) ∈ 𝐵) |
23 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(0g‘𝑃) = (0g‘𝑃) |
24 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(-g‘𝑃) = (-g‘𝑃) |
25 | 2, 23, 24 | grpsubeq0 18576 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ (𝑞 · 𝐺) ∈ 𝐵) → ((𝐹(-g‘𝑃)(𝑞 · 𝐺)) = (0g‘𝑃) ↔ 𝐹 = (𝑞 · 𝐺))) |
26 | 17, 18, 22, 25 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑞 ∈ 𝐵) → ((𝐹(-g‘𝑃)(𝑞 · 𝐺)) = (0g‘𝑃) ↔ 𝐹 = (𝑞 · 𝐺))) |
27 | 26 | biimprd 247 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑞 ∈ 𝐵) → (𝐹 = (𝑞 · 𝐺) → (𝐹(-g‘𝑃)(𝑞 · 𝐺)) = (0g‘𝑃))) |
28 | 27 | impr 454 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ (𝑞 ∈ 𝐵 ∧ 𝐹 = (𝑞 · 𝐺))) → (𝐹(-g‘𝑃)(𝑞 · 𝐺)) = (0g‘𝑃)) |
29 | 28 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ (𝑞 ∈ 𝐵 ∧ 𝐹 = (𝑞 · 𝐺))) → (( deg1 ‘𝑅)‘(𝐹(-g‘𝑃)(𝑞 · 𝐺))) = (( deg1 ‘𝑅)‘(0g‘𝑃))) |
30 | | simpl1 1189 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ (𝑞 ∈ 𝐵 ∧ 𝐹 = (𝑞 · 𝐺))) → 𝑅 ∈ Ring) |
31 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (
deg1 ‘𝑅) =
( deg1 ‘𝑅) |
32 | 31, 1, 23 | deg1z 25157 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → ((
deg1 ‘𝑅)‘(0g‘𝑃)) = -∞) |
33 | 30, 32 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ (𝑞 ∈ 𝐵 ∧ 𝐹 = (𝑞 · 𝐺))) → (( deg1 ‘𝑅)‘(0g‘𝑃)) = -∞) |
34 | 29, 33 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ (𝑞 ∈ 𝐵 ∧ 𝐹 = (𝑞 · 𝐺))) → (( deg1 ‘𝑅)‘(𝐹(-g‘𝑃)(𝑞 · 𝐺))) = -∞) |
35 | 31, 3 | uc1pdeg 25217 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐶) → (( deg1 ‘𝑅)‘𝐺) ∈
ℕ0) |
36 | 35 | 3adant2 1129 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (( deg1 ‘𝑅)‘𝐺) ∈
ℕ0) |
37 | 36 | nn0red 12224 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (( deg1 ‘𝑅)‘𝐺) ∈ ℝ) |
38 | 37 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ (𝑞 ∈ 𝐵 ∧ 𝐹 = (𝑞 · 𝐺))) → (( deg1 ‘𝑅)‘𝐺) ∈ ℝ) |
39 | 38 | mnfltd 12789 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ (𝑞 ∈ 𝐵 ∧ 𝐹 = (𝑞 · 𝐺))) → -∞ < (( deg1
‘𝑅)‘𝐺)) |
40 | 34, 39 | eqbrtrd 5092 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ (𝑞 ∈ 𝐵 ∧ 𝐹 = (𝑞 · 𝐺))) → (( deg1 ‘𝑅)‘(𝐹(-g‘𝑃)(𝑞 · 𝐺))) < (( deg1 ‘𝑅)‘𝐺)) |
41 | | dvdsq1p.q |
. . . . . . . . . . 11
⊢ 𝑄 =
(quot1p‘𝑅) |
42 | 41, 1, 2, 31, 24, 7, 3 | q1peqb 25224 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝑞 ∈ 𝐵 ∧ (( deg1 ‘𝑅)‘(𝐹(-g‘𝑃)(𝑞 · 𝐺))) < (( deg1 ‘𝑅)‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑞)) |
43 | 42 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ (𝑞 ∈ 𝐵 ∧ 𝐹 = (𝑞 · 𝐺))) → ((𝑞 ∈ 𝐵 ∧ (( deg1 ‘𝑅)‘(𝐹(-g‘𝑃)(𝑞 · 𝐺))) < (( deg1 ‘𝑅)‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑞)) |
44 | 12, 40, 43 | mpbi2and 708 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ (𝑞 ∈ 𝐵 ∧ 𝐹 = (𝑞 · 𝐺))) → (𝐹𝑄𝐺) = 𝑞) |
45 | 44 | oveq1d 7270 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ (𝑞 ∈ 𝐵 ∧ 𝐹 = (𝑞 · 𝐺))) → ((𝐹𝑄𝐺) · 𝐺) = (𝑞 · 𝐺)) |
46 | 11, 45 | eqtr4d 2781 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ (𝑞 ∈ 𝐵 ∧ 𝐹 = (𝑞 · 𝐺))) → 𝐹 = ((𝐹𝑄𝐺) · 𝐺)) |
47 | 46 | expr 456 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑞 ∈ 𝐵) → (𝐹 = (𝑞 · 𝐺) → 𝐹 = ((𝐹𝑄𝐺) · 𝐺))) |
48 | 10, 47 | syl5bi 241 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) ∧ 𝑞 ∈ 𝐵) → ((𝑞 · 𝐺) = 𝐹 → 𝐹 = ((𝐹𝑄𝐺) · 𝐺))) |
49 | 48 | rexlimdva 3212 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (∃𝑞 ∈ 𝐵 (𝑞 · 𝐺) = 𝐹 → 𝐹 = ((𝐹𝑄𝐺) · 𝐺))) |
50 | 9, 49 | sylbid 239 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐺 ∥ 𝐹 → 𝐹 = ((𝐹𝑄𝐺) · 𝐺))) |
51 | 41, 1, 2, 3 | q1pcl 25225 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝑄𝐺) ∈ 𝐵) |
52 | 2, 6, 7 | dvdsrmul 19805 |
. . . 4
⊢ ((𝐺 ∈ 𝐵 ∧ (𝐹𝑄𝐺) ∈ 𝐵) → 𝐺 ∥ ((𝐹𝑄𝐺) · 𝐺)) |
53 | 5, 51, 52 | syl2anc 583 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∥ ((𝐹𝑄𝐺) · 𝐺)) |
54 | | breq2 5074 |
. . 3
⊢ (𝐹 = ((𝐹𝑄𝐺) · 𝐺) → (𝐺 ∥ 𝐹 ↔ 𝐺 ∥ ((𝐹𝑄𝐺) · 𝐺))) |
55 | 53, 54 | syl5ibrcom 246 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹 = ((𝐹𝑄𝐺) · 𝐺) → 𝐺 ∥ 𝐹)) |
56 | 50, 55 | impbid 211 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐺 ∥ 𝐹 ↔ 𝐹 = ((𝐹𝑄𝐺) · 𝐺))) |