MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsq1p Structured version   Visualization version   GIF version

Theorem dvdsq1p 24756
Description: Divisibility in a polynomial ring is witnessed by the quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
dvdsq1p.p 𝑃 = (Poly1𝑅)
dvdsq1p.d = (∥r𝑃)
dvdsq1p.b 𝐵 = (Base‘𝑃)
dvdsq1p.c 𝐶 = (Unic1p𝑅)
dvdsq1p.t · = (.r𝑃)
dvdsq1p.q 𝑄 = (quot1p𝑅)
Assertion
Ref Expression
dvdsq1p ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))

Proof of Theorem dvdsq1p
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 dvdsq1p.p . . . . . 6 𝑃 = (Poly1𝑅)
2 dvdsq1p.b . . . . . 6 𝐵 = (Base‘𝑃)
3 dvdsq1p.c . . . . . 6 𝐶 = (Unic1p𝑅)
41, 2, 3uc1pcl 24739 . . . . 5 (𝐺𝐶𝐺𝐵)
543ad2ant3 1131 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
6 dvdsq1p.d . . . . 5 = (∥r𝑃)
7 dvdsq1p.t . . . . 5 · = (.r𝑃)
82, 6, 7dvdsr2 19399 . . . 4 (𝐺𝐵 → (𝐺 𝐹 ↔ ∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹))
95, 8syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹 ↔ ∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹))
10 eqcom 2830 . . . . 5 ((𝑞 · 𝐺) = 𝐹𝐹 = (𝑞 · 𝐺))
11 simprr 771 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝐹 = (𝑞 · 𝐺))
12 simprl 769 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝑞𝐵)
13 simpl1 1187 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑅 ∈ Ring)
141ply1ring 20418 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1513, 14syl 17 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑃 ∈ Ring)
16 ringgrp 19304 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
1715, 16syl 17 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑃 ∈ Grp)
18 simpl2 1188 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝐹𝐵)
19 simpr 487 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑞𝐵)
205adantr 483 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝐺𝐵)
212, 7ringcl 19313 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Ring ∧ 𝑞𝐵𝐺𝐵) → (𝑞 · 𝐺) ∈ 𝐵)
2215, 19, 20, 21syl3anc 1367 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝑞 · 𝐺) ∈ 𝐵)
23 eqid 2823 . . . . . . . . . . . . . . . 16 (0g𝑃) = (0g𝑃)
24 eqid 2823 . . . . . . . . . . . . . . . 16 (-g𝑃) = (-g𝑃)
252, 23, 24grpsubeq0 18187 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝑞 · 𝐺) ∈ 𝐵) → ((𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃) ↔ 𝐹 = (𝑞 · 𝐺)))
2617, 18, 22, 25syl3anc 1367 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → ((𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃) ↔ 𝐹 = (𝑞 · 𝐺)))
2726biimprd 250 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝐹 = (𝑞 · 𝐺) → (𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃)))
2827impr 457 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃))
2928fveq2d 6676 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) = (( deg1𝑅)‘(0g𝑃)))
30 simpl1 1187 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝑅 ∈ Ring)
31 eqid 2823 . . . . . . . . . . . . 13 ( deg1𝑅) = ( deg1𝑅)
3231, 1, 23deg1z 24683 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (( deg1𝑅)‘(0g𝑃)) = -∞)
3330, 32syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(0g𝑃)) = -∞)
3429, 33eqtrd 2858 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) = -∞)
3531, 3uc1pdeg 24743 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐺𝐶) → (( deg1𝑅)‘𝐺) ∈ ℕ0)
36353adant2 1127 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (( deg1𝑅)‘𝐺) ∈ ℕ0)
3736nn0red 11959 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (( deg1𝑅)‘𝐺) ∈ ℝ)
3837adantr 483 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘𝐺) ∈ ℝ)
3938mnfltd 12522 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → -∞ < (( deg1𝑅)‘𝐺))
4034, 39eqbrtrd 5090 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < (( deg1𝑅)‘𝐺))
41 dvdsq1p.q . . . . . . . . . . 11 𝑄 = (quot1p𝑅)
4241, 1, 2, 31, 24, 7, 3q1peqb 24750 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑞𝐵 ∧ (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < (( deg1𝑅)‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑞))
4342adantr 483 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((𝑞𝐵 ∧ (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < (( deg1𝑅)‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑞))
4412, 40, 43mpbi2and 710 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (𝐹𝑄𝐺) = 𝑞)
4544oveq1d 7173 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((𝐹𝑄𝐺) · 𝐺) = (𝑞 · 𝐺))
4611, 45eqtr4d 2861 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝐹 = ((𝐹𝑄𝐺) · 𝐺))
4746expr 459 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝐹 = (𝑞 · 𝐺) → 𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
4810, 47syl5bi 244 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → ((𝑞 · 𝐺) = 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
4948rexlimdva 3286 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
509, 49sylbid 242 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
5141, 1, 2, 3q1pcl 24751 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) ∈ 𝐵)
522, 6, 7dvdsrmul 19400 . . . 4 ((𝐺𝐵 ∧ (𝐹𝑄𝐺) ∈ 𝐵) → 𝐺 ((𝐹𝑄𝐺) · 𝐺))
535, 51, 52syl2anc 586 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺 ((𝐹𝑄𝐺) · 𝐺))
54 breq2 5072 . . 3 (𝐹 = ((𝐹𝑄𝐺) · 𝐺) → (𝐺 𝐹𝐺 ((𝐹𝑄𝐺) · 𝐺)))
5553, 54syl5ibrcom 249 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹 = ((𝐹𝑄𝐺) · 𝐺) → 𝐺 𝐹))
5650, 55impbid 214 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141   class class class wbr 5068  cfv 6357  (class class class)co 7158  cr 10538  -∞cmnf 10675   < clt 10677  0cn0 11900  Basecbs 16485  .rcmulr 16568  0gc0g 16715  Grpcgrp 18105  -gcsg 18107  Ringcrg 19299  rcdsr 19390  Poly1cpl1 20347   deg1 cdg1 24650  Unic1pcuc1p 24722  quot1pcq1p 24723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-subrg 19535  df-lmod 19638  df-lss 19706  df-rlreg 20058  df-psr 20138  df-mvr 20139  df-mpl 20140  df-opsr 20142  df-psr1 20350  df-vr1 20351  df-ply1 20352  df-coe1 20353  df-cnfld 20548  df-mdeg 24651  df-deg1 24652  df-uc1p 24727  df-q1p 24728
This theorem is referenced by:  dvdsr1p  24757  fta1glem1  24761  fta1glem2  24762
  Copyright terms: Public domain W3C validator