MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsq1p Structured version   Visualization version   GIF version

Theorem dvdsq1p 25230
Description: Divisibility in a polynomial ring is witnessed by the quotient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
dvdsq1p.p 𝑃 = (Poly1𝑅)
dvdsq1p.d = (∥r𝑃)
dvdsq1p.b 𝐵 = (Base‘𝑃)
dvdsq1p.c 𝐶 = (Unic1p𝑅)
dvdsq1p.t · = (.r𝑃)
dvdsq1p.q 𝑄 = (quot1p𝑅)
Assertion
Ref Expression
dvdsq1p ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))

Proof of Theorem dvdsq1p
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 dvdsq1p.p . . . . . 6 𝑃 = (Poly1𝑅)
2 dvdsq1p.b . . . . . 6 𝐵 = (Base‘𝑃)
3 dvdsq1p.c . . . . . 6 𝐶 = (Unic1p𝑅)
41, 2, 3uc1pcl 25213 . . . . 5 (𝐺𝐶𝐺𝐵)
543ad2ant3 1133 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
6 dvdsq1p.d . . . . 5 = (∥r𝑃)
7 dvdsq1p.t . . . . 5 · = (.r𝑃)
82, 6, 7dvdsr2 19804 . . . 4 (𝐺𝐵 → (𝐺 𝐹 ↔ ∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹))
95, 8syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹 ↔ ∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹))
10 eqcom 2745 . . . . 5 ((𝑞 · 𝐺) = 𝐹𝐹 = (𝑞 · 𝐺))
11 simprr 769 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝐹 = (𝑞 · 𝐺))
12 simprl 767 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝑞𝐵)
13 simpl1 1189 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑅 ∈ Ring)
141ply1ring 21329 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1513, 14syl 17 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑃 ∈ Ring)
16 ringgrp 19703 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
1715, 16syl 17 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑃 ∈ Grp)
18 simpl2 1190 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝐹𝐵)
19 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝑞𝐵)
205adantr 480 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → 𝐺𝐵)
212, 7ringcl 19715 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Ring ∧ 𝑞𝐵𝐺𝐵) → (𝑞 · 𝐺) ∈ 𝐵)
2215, 19, 20, 21syl3anc 1369 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝑞 · 𝐺) ∈ 𝐵)
23 eqid 2738 . . . . . . . . . . . . . . . 16 (0g𝑃) = (0g𝑃)
24 eqid 2738 . . . . . . . . . . . . . . . 16 (-g𝑃) = (-g𝑃)
252, 23, 24grpsubeq0 18576 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (𝑞 · 𝐺) ∈ 𝐵) → ((𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃) ↔ 𝐹 = (𝑞 · 𝐺)))
2617, 18, 22, 25syl3anc 1369 . . . . . . . . . . . . . 14 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → ((𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃) ↔ 𝐹 = (𝑞 · 𝐺)))
2726biimprd 247 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝐹 = (𝑞 · 𝐺) → (𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃)))
2827impr 454 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (𝐹(-g𝑃)(𝑞 · 𝐺)) = (0g𝑃))
2928fveq2d 6760 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) = (( deg1𝑅)‘(0g𝑃)))
30 simpl1 1189 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝑅 ∈ Ring)
31 eqid 2738 . . . . . . . . . . . . 13 ( deg1𝑅) = ( deg1𝑅)
3231, 1, 23deg1z 25157 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (( deg1𝑅)‘(0g𝑃)) = -∞)
3330, 32syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(0g𝑃)) = -∞)
3429, 33eqtrd 2778 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) = -∞)
3531, 3uc1pdeg 25217 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐺𝐶) → (( deg1𝑅)‘𝐺) ∈ ℕ0)
36353adant2 1129 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (( deg1𝑅)‘𝐺) ∈ ℕ0)
3736nn0red 12224 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (( deg1𝑅)‘𝐺) ∈ ℝ)
3837adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘𝐺) ∈ ℝ)
3938mnfltd 12789 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → -∞ < (( deg1𝑅)‘𝐺))
4034, 39eqbrtrd 5092 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < (( deg1𝑅)‘𝐺))
41 dvdsq1p.q . . . . . . . . . . 11 𝑄 = (quot1p𝑅)
4241, 1, 2, 31, 24, 7, 3q1peqb 25224 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝑞𝐵 ∧ (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < (( deg1𝑅)‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑞))
4342adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((𝑞𝐵 ∧ (( deg1𝑅)‘(𝐹(-g𝑃)(𝑞 · 𝐺))) < (( deg1𝑅)‘𝐺)) ↔ (𝐹𝑄𝐺) = 𝑞))
4412, 40, 43mpbi2and 708 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → (𝐹𝑄𝐺) = 𝑞)
4544oveq1d 7270 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → ((𝐹𝑄𝐺) · 𝐺) = (𝑞 · 𝐺))
4611, 45eqtr4d 2781 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ (𝑞𝐵𝐹 = (𝑞 · 𝐺))) → 𝐹 = ((𝐹𝑄𝐺) · 𝐺))
4746expr 456 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → (𝐹 = (𝑞 · 𝐺) → 𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
4810, 47syl5bi 241 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) ∧ 𝑞𝐵) → ((𝑞 · 𝐺) = 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
4948rexlimdva 3212 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (∃𝑞𝐵 (𝑞 · 𝐺) = 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
509, 49sylbid 239 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
5141, 1, 2, 3q1pcl 25225 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝑄𝐺) ∈ 𝐵)
522, 6, 7dvdsrmul 19805 . . . 4 ((𝐺𝐵 ∧ (𝐹𝑄𝐺) ∈ 𝐵) → 𝐺 ((𝐹𝑄𝐺) · 𝐺))
535, 51, 52syl2anc 583 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺 ((𝐹𝑄𝐺) · 𝐺))
54 breq2 5074 . . 3 (𝐹 = ((𝐹𝑄𝐺) · 𝐺) → (𝐺 𝐹𝐺 ((𝐹𝑄𝐺) · 𝐺)))
5553, 54syl5ibrcom 246 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹 = ((𝐹𝑄𝐺) · 𝐺) → 𝐺 𝐹))
5650, 55impbid 211 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐺 𝐹𝐹 = ((𝐹𝑄𝐺) · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  -∞cmnf 10938   < clt 10940  0cn0 12163  Basecbs 16840  .rcmulr 16889  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  Ringcrg 19698  rcdsr 19795  Poly1cpl1 21258   deg1 cdg1 25121  Unic1pcuc1p 25196  quot1pcq1p 25197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-subrg 19937  df-lmod 20040  df-lss 20109  df-rlreg 20467  df-cnfld 20511  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264  df-mdeg 25122  df-deg1 25123  df-uc1p 25201  df-q1p 25202
This theorem is referenced by:  dvdsr1p  25231  fta1glem1  25235  fta1glem2  25236
  Copyright terms: Public domain W3C validator