Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdsr01 | Structured version Visualization version GIF version |
Description: In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning, see df-rlreg 20660.) (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
dvdsr0.b | ⊢ 𝐵 = (Base‘𝑅) |
dvdsr0.d | ⊢ ∥ = (∥r‘𝑅) |
dvdsr0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
dvdsr01 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsr0.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | dvdsr0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | ring0cl 19903 | . . 3 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
4 | eqid 2737 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 4, 2 | ringlz 19921 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 (.r‘𝑅)𝑋) = 0 ) |
6 | oveq1 7349 | . . . . 5 ⊢ (𝑥 = 0 → (𝑥(.r‘𝑅)𝑋) = ( 0 (.r‘𝑅)𝑋)) | |
7 | 6 | eqeq1d 2739 | . . . 4 ⊢ (𝑥 = 0 → ((𝑥(.r‘𝑅)𝑋) = 0 ↔ ( 0 (.r‘𝑅)𝑋) = 0 )) |
8 | 7 | rspcev 3574 | . . 3 ⊢ (( 0 ∈ 𝐵 ∧ ( 0 (.r‘𝑅)𝑋) = 0 ) → ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑋) = 0 ) |
9 | 3, 5, 8 | syl2an2r 683 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑋) = 0 ) |
10 | dvdsr0.d | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
11 | 1, 10, 4 | dvdsr2 19984 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (𝑋 ∥ 0 ↔ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑋) = 0 )) |
12 | 11 | adantl 483 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 ∥ 0 ↔ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑋) = 0 )) |
13 | 9, 12 | mpbird 257 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 class class class wbr 5097 ‘cfv 6484 (class class class)co 7342 Basecbs 17010 .rcmulr 17061 0gc0g 17248 Ringcrg 19878 ∥rcdsr 19975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-plusg 17073 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-grp 18677 df-minusg 18678 df-mgp 19816 df-ring 19880 df-dvdsr 19978 |
This theorem is referenced by: ig1pdvds 25447 |
Copyright terms: Public domain | W3C validator |