MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsr01 Structured version   Visualization version   GIF version

Theorem dvdsr01 19992
Description: In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning, see df-rlreg 20660.) (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
dvdsr0.b 𝐵 = (Base‘𝑅)
dvdsr0.d = (∥r𝑅)
dvdsr0.z 0 = (0g𝑅)
Assertion
Ref Expression
dvdsr01 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 0 )

Proof of Theorem dvdsr01
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvdsr0.b . . . 4 𝐵 = (Base‘𝑅)
2 dvdsr0.z . . . 4 0 = (0g𝑅)
31, 2ring0cl 19903 . . 3 (𝑅 ∈ Ring → 0𝐵)
4 eqid 2737 . . . 4 (.r𝑅) = (.r𝑅)
51, 4, 2ringlz 19921 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 (.r𝑅)𝑋) = 0 )
6 oveq1 7349 . . . . 5 (𝑥 = 0 → (𝑥(.r𝑅)𝑋) = ( 0 (.r𝑅)𝑋))
76eqeq1d 2739 . . . 4 (𝑥 = 0 → ((𝑥(.r𝑅)𝑋) = 0 ↔ ( 0 (.r𝑅)𝑋) = 0 ))
87rspcev 3574 . . 3 (( 0𝐵 ∧ ( 0 (.r𝑅)𝑋) = 0 ) → ∃𝑥𝐵 (𝑥(.r𝑅)𝑋) = 0 )
93, 5, 8syl2an2r 683 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑥𝐵 (𝑥(.r𝑅)𝑋) = 0 )
10 dvdsr0.d . . . 4 = (∥r𝑅)
111, 10, 4dvdsr2 19984 . . 3 (𝑋𝐵 → (𝑋 0 ↔ ∃𝑥𝐵 (𝑥(.r𝑅)𝑋) = 0 ))
1211adantl 483 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 0 ↔ ∃𝑥𝐵 (𝑥(.r𝑅)𝑋) = 0 ))
139, 12mpbird 257 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wrex 3071   class class class wbr 5097  cfv 6484  (class class class)co 7342  Basecbs 17010  .rcmulr 17061  0gc0g 17248  Ringcrg 19878  rcdsr 19975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-2 12142  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-plusg 17073  df-0g 17250  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-grp 18677  df-minusg 18678  df-mgp 19816  df-ring 19880  df-dvdsr 19978
This theorem is referenced by:  ig1pdvds  25447
  Copyright terms: Public domain W3C validator