![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsr01 | Structured version Visualization version GIF version |
Description: In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning, see df-rlreg 21190.) (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
dvdsr0.b | ⊢ 𝐵 = (Base‘𝑅) |
dvdsr0.d | ⊢ ∥ = (∥r‘𝑅) |
dvdsr0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
dvdsr01 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsr0.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | dvdsr0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | ring0cl 20163 | . . 3 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
4 | eqid 2726 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | 1, 4, 2 | ringlz 20189 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 (.r‘𝑅)𝑋) = 0 ) |
6 | oveq1 7411 | . . . . 5 ⊢ (𝑥 = 0 → (𝑥(.r‘𝑅)𝑋) = ( 0 (.r‘𝑅)𝑋)) | |
7 | 6 | eqeq1d 2728 | . . . 4 ⊢ (𝑥 = 0 → ((𝑥(.r‘𝑅)𝑋) = 0 ↔ ( 0 (.r‘𝑅)𝑋) = 0 )) |
8 | 7 | rspcev 3606 | . . 3 ⊢ (( 0 ∈ 𝐵 ∧ ( 0 (.r‘𝑅)𝑋) = 0 ) → ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑋) = 0 ) |
9 | 3, 5, 8 | syl2an2r 682 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑋) = 0 ) |
10 | dvdsr0.d | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
11 | 1, 10, 4 | dvdsr2 20262 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (𝑋 ∥ 0 ↔ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑋) = 0 )) |
12 | 11 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 ∥ 0 ↔ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑋) = 0 )) |
13 | 9, 12 | mpbird 257 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 Basecbs 17150 .rcmulr 17204 0gc0g 17391 Ringcrg 20135 ∥rcdsr 20253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-plusg 17216 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 df-minusg 18864 df-cmn 19699 df-abl 19700 df-mgp 20037 df-rng 20055 df-ur 20084 df-ring 20137 df-dvdsr 20256 |
This theorem is referenced by: ig1pdvds 26064 |
Copyright terms: Public domain | W3C validator |