MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmdvdsr Structured version   Visualization version   GIF version

Theorem rhmdvdsr 20492
Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
rhmdvdsr.x 𝑋 = (Base‘𝑅)
rhmdvdsr.m = (∥r𝑅)
rhmdvdsr.n / = (∥r𝑆)
Assertion
Ref Expression
rhmdvdsr (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) / (𝐹𝐵))

Proof of Theorem rhmdvdsr
Dummy variables 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
2 simpl2 1189 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐴𝑋)
3 rhmdvdsr.x . . . . 5 𝑋 = (Base‘𝑅)
4 eqid 2726 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
53, 4rhmf 20469 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝑋⟶(Base‘𝑆))
65ffvelcdmda 7100 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ (Base‘𝑆))
71, 2, 6syl2anc 582 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) ∈ (Base‘𝑆))
8 simpll1 1209 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝐹 ∈ (𝑅 RingHom 𝑆))
9 simpr 483 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝑐𝑋)
105ffvelcdmda 7100 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑐𝑋) → (𝐹𝑐) ∈ (Base‘𝑆))
118, 9, 10syl2anc 582 . . . . 5 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → (𝐹𝑐) ∈ (Base‘𝑆))
1211ralrimiva 3136 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∀𝑐𝑋 (𝐹𝑐) ∈ (Base‘𝑆))
132adantr 479 . . . . . . 7 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝐴𝑋)
14 eqid 2726 . . . . . . . 8 (.r𝑅) = (.r𝑅)
15 eqid 2726 . . . . . . . 8 (.r𝑆) = (.r𝑆)
163, 14, 15rhmmul 20470 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑐𝑋𝐴𝑋) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
178, 9, 13, 16syl3anc 1368 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
1817ralrimiva 3136 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
19 simpr 483 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐴 𝐵)
20 rhmdvdsr.m . . . . . . . 8 = (∥r𝑅)
213, 20, 14dvdsr2 20347 . . . . . . 7 (𝐴𝑋 → (𝐴 𝐵 ↔ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵))
2221biimpac 477 . . . . . 6 ((𝐴 𝐵𝐴𝑋) → ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵)
2319, 2, 22syl2anc 582 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵)
24 r19.29 3104 . . . . . 6 ((∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵))
25 simpl 481 . . . . . . . 8 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
26 simpr 483 . . . . . . . . 9 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝑐(.r𝑅)𝐴) = 𝐵)
2726fveq2d 6907 . . . . . . . 8 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝐹‘(𝑐(.r𝑅)𝐴)) = (𝐹𝐵))
2825, 27eqtr3d 2768 . . . . . . 7 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
2928reximi 3074 . . . . . 6 (∃𝑐𝑋 ((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3024, 29syl 17 . . . . 5 ((∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3118, 23, 30syl2anc 582 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
32 r19.29 3104 . . . 4 ((∀𝑐𝑋 (𝐹𝑐) ∈ (Base‘𝑆) ∧ ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
3312, 31, 32syl2anc 582 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
34 oveq1 7433 . . . . . 6 (𝑦 = (𝐹𝑐) → (𝑦(.r𝑆)(𝐹𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
3534eqeq1d 2728 . . . . 5 (𝑦 = (𝐹𝑐) → ((𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵) ↔ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
3635rspcev 3608 . . . 4 (((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3736rexlimivw 3141 . . 3 (∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3833, 37syl 17 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
39 rhmdvdsr.n . . 3 / = (∥r𝑆)
404, 39, 15dvdsr 20346 . 2 ((𝐹𝐴) / (𝐹𝐵) ↔ ((𝐹𝐴) ∈ (Base‘𝑆) ∧ ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
417, 38, 40sylanbrc 581 1 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) / (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wrex 3060   class class class wbr 5155  cfv 6556  (class class class)co 7426  Basecbs 17215  .rcmulr 17269  rcdsr 20338   RingHom crh 20453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-map 8859  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-plusg 17281  df-0g 17458  df-mhm 18775  df-ghm 19209  df-mgp 20120  df-ur 20167  df-ring 20220  df-dvdsr 20341  df-rhm 20456
This theorem is referenced by:  elrhmunit  20494
  Copyright terms: Public domain W3C validator