| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl1 1191 | . . 3
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | 
| 2 |  | simpl2 1192 | . . 3
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∈ 𝑋) | 
| 3 |  | rhmdvdsr.x | . . . . 5
⊢ 𝑋 = (Base‘𝑅) | 
| 4 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 5 | 3, 4 | rhmf 20486 | . . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝑋⟶(Base‘𝑆)) | 
| 6 | 5 | ffvelcdmda 7103 | . . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ (Base‘𝑆)) | 
| 7 | 1, 2, 6 | syl2anc 584 | . 2
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → (𝐹‘𝐴) ∈ (Base‘𝑆)) | 
| 8 |  | simpll1 1212 | . . . . . 6
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) ∧ 𝑐 ∈ 𝑋) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | 
| 9 |  | simpr 484 | . . . . . 6
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) ∧ 𝑐 ∈ 𝑋) → 𝑐 ∈ 𝑋) | 
| 10 | 5 | ffvelcdmda 7103 | . . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑐 ∈ 𝑋) → (𝐹‘𝑐) ∈ (Base‘𝑆)) | 
| 11 | 8, 9, 10 | syl2anc 584 | . . . . 5
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) ∧ 𝑐 ∈ 𝑋) → (𝐹‘𝑐) ∈ (Base‘𝑆)) | 
| 12 | 11 | ralrimiva 3145 | . . . 4
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → ∀𝑐 ∈ 𝑋 (𝐹‘𝑐) ∈ (Base‘𝑆)) | 
| 13 | 2 | adantr 480 | . . . . . . 7
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) ∧ 𝑐 ∈ 𝑋) → 𝐴 ∈ 𝑋) | 
| 14 |  | eqid 2736 | . . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 15 |  | eqid 2736 | . . . . . . . 8
⊢
(.r‘𝑆) = (.r‘𝑆) | 
| 16 | 3, 14, 15 | rhmmul 20487 | . . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑐 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴))) | 
| 17 | 8, 9, 13, 16 | syl3anc 1372 | . . . . . 6
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) ∧ 𝑐 ∈ 𝑋) → (𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴))) | 
| 18 | 17 | ralrimiva 3145 | . . . . 5
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → ∀𝑐 ∈ 𝑋 (𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴))) | 
| 19 |  | simpr 484 | . . . . . 6
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∥ 𝐵) | 
| 20 |  | rhmdvdsr.m | . . . . . . . 8
⊢  ∥ =
(∥r‘𝑅) | 
| 21 | 3, 20, 14 | dvdsr2 20364 | . . . . . . 7
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∥ 𝐵 ↔ ∃𝑐 ∈ 𝑋 (𝑐(.r‘𝑅)𝐴) = 𝐵)) | 
| 22 | 21 | biimpac 478 | . . . . . 6
⊢ ((𝐴 ∥ 𝐵 ∧ 𝐴 ∈ 𝑋) → ∃𝑐 ∈ 𝑋 (𝑐(.r‘𝑅)𝐴) = 𝐵) | 
| 23 | 19, 2, 22 | syl2anc 584 | . . . . 5
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → ∃𝑐 ∈ 𝑋 (𝑐(.r‘𝑅)𝐴) = 𝐵) | 
| 24 |  | r19.29 3113 | . . . . . 6
⊢
((∀𝑐 ∈
𝑋 (𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ ∃𝑐 ∈ 𝑋 (𝑐(.r‘𝑅)𝐴) = 𝐵) → ∃𝑐 ∈ 𝑋 ((𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ (𝑐(.r‘𝑅)𝐴) = 𝐵)) | 
| 25 |  | simpl 482 | . . . . . . . 8
⊢ (((𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ (𝑐(.r‘𝑅)𝐴) = 𝐵) → (𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴))) | 
| 26 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ (𝑐(.r‘𝑅)𝐴) = 𝐵) → (𝑐(.r‘𝑅)𝐴) = 𝐵) | 
| 27 | 26 | fveq2d 6909 | . . . . . . . 8
⊢ (((𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ (𝑐(.r‘𝑅)𝐴) = 𝐵) → (𝐹‘(𝑐(.r‘𝑅)𝐴)) = (𝐹‘𝐵)) | 
| 28 | 25, 27 | eqtr3d 2778 | . . . . . . 7
⊢ (((𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ (𝑐(.r‘𝑅)𝐴) = 𝐵) → ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) | 
| 29 | 28 | reximi 3083 | . . . . . 6
⊢
(∃𝑐 ∈
𝑋 ((𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ (𝑐(.r‘𝑅)𝐴) = 𝐵) → ∃𝑐 ∈ 𝑋 ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) | 
| 30 | 24, 29 | syl 17 | . . . . 5
⊢
((∀𝑐 ∈
𝑋 (𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ ∃𝑐 ∈ 𝑋 (𝑐(.r‘𝑅)𝐴) = 𝐵) → ∃𝑐 ∈ 𝑋 ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) | 
| 31 | 18, 23, 30 | syl2anc 584 | . . . 4
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → ∃𝑐 ∈ 𝑋 ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) | 
| 32 |  | r19.29 3113 | . . . 4
⊢
((∀𝑐 ∈
𝑋 (𝐹‘𝑐) ∈ (Base‘𝑆) ∧ ∃𝑐 ∈ 𝑋 ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) → ∃𝑐 ∈ 𝑋 ((𝐹‘𝑐) ∈ (Base‘𝑆) ∧ ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵))) | 
| 33 | 12, 31, 32 | syl2anc 584 | . . 3
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → ∃𝑐 ∈ 𝑋 ((𝐹‘𝑐) ∈ (Base‘𝑆) ∧ ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵))) | 
| 34 |  | oveq1 7439 | . . . . . 6
⊢ (𝑦 = (𝐹‘𝑐) → (𝑦(.r‘𝑆)(𝐹‘𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴))) | 
| 35 | 34 | eqeq1d 2738 | . . . . 5
⊢ (𝑦 = (𝐹‘𝑐) → ((𝑦(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵) ↔ ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵))) | 
| 36 | 35 | rspcev 3621 | . . . 4
⊢ (((𝐹‘𝑐) ∈ (Base‘𝑆) ∧ ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) | 
| 37 | 36 | rexlimivw 3150 | . . 3
⊢
(∃𝑐 ∈
𝑋 ((𝐹‘𝑐) ∈ (Base‘𝑆) ∧ ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) | 
| 38 | 33, 37 | syl 17 | . 2
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) | 
| 39 |  | rhmdvdsr.n | . . 3
⊢  / =
(∥r‘𝑆) | 
| 40 | 4, 39, 15 | dvdsr 20363 | . 2
⊢ ((𝐹‘𝐴) / (𝐹‘𝐵) ↔ ((𝐹‘𝐴) ∈ (Base‘𝑆) ∧ ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵))) | 
| 41 | 7, 38, 40 | sylanbrc 583 | 1
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → (𝐹‘𝐴) / (𝐹‘𝐵)) |