MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmdvdsr Structured version   Visualization version   GIF version

Theorem rhmdvdsr 20534
Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
rhmdvdsr.x 𝑋 = (Base‘𝑅)
rhmdvdsr.m = (∥r𝑅)
rhmdvdsr.n / = (∥r𝑆)
Assertion
Ref Expression
rhmdvdsr (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) / (𝐹𝐵))

Proof of Theorem rhmdvdsr
Dummy variables 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
2 simpl2 1192 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐴𝑋)
3 rhmdvdsr.x . . . . 5 𝑋 = (Base‘𝑅)
4 eqid 2740 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
53, 4rhmf 20511 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝑋⟶(Base‘𝑆))
65ffvelcdmda 7118 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ (Base‘𝑆))
71, 2, 6syl2anc 583 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) ∈ (Base‘𝑆))
8 simpll1 1212 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝐹 ∈ (𝑅 RingHom 𝑆))
9 simpr 484 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝑐𝑋)
105ffvelcdmda 7118 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑐𝑋) → (𝐹𝑐) ∈ (Base‘𝑆))
118, 9, 10syl2anc 583 . . . . 5 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → (𝐹𝑐) ∈ (Base‘𝑆))
1211ralrimiva 3152 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∀𝑐𝑋 (𝐹𝑐) ∈ (Base‘𝑆))
132adantr 480 . . . . . . 7 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝐴𝑋)
14 eqid 2740 . . . . . . . 8 (.r𝑅) = (.r𝑅)
15 eqid 2740 . . . . . . . 8 (.r𝑆) = (.r𝑆)
163, 14, 15rhmmul 20512 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑐𝑋𝐴𝑋) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
178, 9, 13, 16syl3anc 1371 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
1817ralrimiva 3152 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
19 simpr 484 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐴 𝐵)
20 rhmdvdsr.m . . . . . . . 8 = (∥r𝑅)
213, 20, 14dvdsr2 20389 . . . . . . 7 (𝐴𝑋 → (𝐴 𝐵 ↔ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵))
2221biimpac 478 . . . . . 6 ((𝐴 𝐵𝐴𝑋) → ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵)
2319, 2, 22syl2anc 583 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵)
24 r19.29 3120 . . . . . 6 ((∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵))
25 simpl 482 . . . . . . . 8 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
26 simpr 484 . . . . . . . . 9 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝑐(.r𝑅)𝐴) = 𝐵)
2726fveq2d 6924 . . . . . . . 8 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝐹‘(𝑐(.r𝑅)𝐴)) = (𝐹𝐵))
2825, 27eqtr3d 2782 . . . . . . 7 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
2928reximi 3090 . . . . . 6 (∃𝑐𝑋 ((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3024, 29syl 17 . . . . 5 ((∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3118, 23, 30syl2anc 583 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
32 r19.29 3120 . . . 4 ((∀𝑐𝑋 (𝐹𝑐) ∈ (Base‘𝑆) ∧ ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
3312, 31, 32syl2anc 583 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
34 oveq1 7455 . . . . . 6 (𝑦 = (𝐹𝑐) → (𝑦(.r𝑆)(𝐹𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
3534eqeq1d 2742 . . . . 5 (𝑦 = (𝐹𝑐) → ((𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵) ↔ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
3635rspcev 3635 . . . 4 (((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3736rexlimivw 3157 . . 3 (∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3833, 37syl 17 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
39 rhmdvdsr.n . . 3 / = (∥r𝑆)
404, 39, 15dvdsr 20388 . 2 ((𝐹𝐴) / (𝐹𝐵) ↔ ((𝐹𝐴) ∈ (Base‘𝑆) ∧ ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
417, 38, 40sylanbrc 582 1 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) / (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  rcdsr 20380   RingHom crh 20495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mhm 18818  df-ghm 19253  df-mgp 20162  df-ur 20209  df-ring 20262  df-dvdsr 20383  df-rhm 20498
This theorem is referenced by:  elrhmunit  20536
  Copyright terms: Public domain W3C validator