MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znunit Structured version   Visualization version   GIF version

Theorem znunit 20771
Description: The units of ℤ/n are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
znunit.l 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
znunit ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1))

Proof of Theorem znunit
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znchr.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
21zncrng 20752 . . . 4 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
32adantr 481 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑌 ∈ CRing)
4 znunit.u . . . 4 𝑈 = (Unit‘𝑌)
5 eqid 2738 . . . 4 (1r𝑌) = (1r𝑌)
6 eqid 2738 . . . 4 (∥r𝑌) = (∥r𝑌)
74, 5, 6crngunit 19904 . . 3 (𝑌 ∈ CRing → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐿𝐴)(∥r𝑌)(1r𝑌)))
83, 7syl 17 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐿𝐴)(∥r𝑌)(1r𝑌)))
9 eqid 2738 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
10 znunit.l . . . . . . 7 𝐿 = (ℤRHom‘𝑌)
111, 9, 10znzrhfo 20755 . . . . . 6 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑌))
1211adantr 481 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿:ℤ–onto→(Base‘𝑌))
13 fof 6688 . . . . 5 (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
1412, 13syl 17 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿:ℤ⟶(Base‘𝑌))
15 ffvelrn 6959 . . . 4 ((𝐿:ℤ⟶(Base‘𝑌) ∧ 𝐴 ∈ ℤ) → (𝐿𝐴) ∈ (Base‘𝑌))
1614, 15sylancom 588 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) ∈ (Base‘𝑌))
17 eqid 2738 . . . 4 (.r𝑌) = (.r𝑌)
189, 6, 17dvdsr2 19889 . . 3 ((𝐿𝐴) ∈ (Base‘𝑌) → ((𝐿𝐴)(∥r𝑌)(1r𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
1916, 18syl 17 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴)(∥r𝑌)(1r𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
20 forn 6691 . . . . . 6 (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌))
2112, 20syl 17 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ran 𝐿 = (Base‘𝑌))
2221rexeqdv 3349 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
23 ffn 6600 . . . . 5 (𝐿:ℤ⟶(Base‘𝑌) → 𝐿 Fn ℤ)
24 oveq1 7282 . . . . . . 7 (𝑥 = (𝐿𝑛) → (𝑥(.r𝑌)(𝐿𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
2524eqeq1d 2740 . . . . . 6 (𝑥 = (𝐿𝑛) → ((𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
2625rexrn 6963 . . . . 5 (𝐿 Fn ℤ → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
2714, 23, 263syl 18 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
2822, 27bitr3d 280 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
29 crngring 19795 . . . . . . . . . 10 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
303, 29syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑌 ∈ Ring)
3110zrhrhm 20713 . . . . . . . . 9 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
3230, 31syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌))
3332adantr 481 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌))
34 simpr 485 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
35 simplr 766 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐴 ∈ ℤ)
36 zringbas 20676 . . . . . . . 8 ℤ = (Base‘ℤring)
37 zringmulr 20679 . . . . . . . 8 · = (.r‘ℤring)
3836, 37, 17rhmmul 19971 . . . . . . 7 ((𝐿 ∈ (ℤring RingHom 𝑌) ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐿‘(𝑛 · 𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
3933, 34, 35, 38syl3anc 1370 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐿‘(𝑛 · 𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
4030adantr 481 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑌 ∈ Ring)
4110, 5zrh1 20714 . . . . . . 7 (𝑌 ∈ Ring → (𝐿‘1) = (1r𝑌))
4240, 41syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐿‘1) = (1r𝑌))
4339, 42eqeq12d 2754 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
44 simpll 764 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℕ0)
4534, 35zmulcld 12432 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝐴) ∈ ℤ)
46 1zzd 12351 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ)
471, 10zndvds 20757 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
4844, 45, 46, 47syl3anc 1370 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
4943, 48bitr3d 280 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
5049rexbidva 3225 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
51 simplr 766 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝐴 ∈ ℤ)
52 nn0z 12343 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
5352ad2antrr 723 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∈ ℤ)
54 gcddvds 16210 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁))
5551, 53, 54syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁))
5655simpld 495 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝐴)
5751, 53gcdcld 16215 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈ ℕ0)
5857nn0zd 12424 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈ ℤ)
5934adantrr 714 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑛 ∈ ℤ)
60 dvdsmultr2 16007 . . . . . . . . 9 (((𝐴 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴)))
6158, 59, 51, 60syl3anc 1370 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴)))
6256, 61mpd 15 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴))
6345adantrr 714 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝑛 · 𝐴) ∈ ℤ)
64 1zzd 12351 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 1 ∈ ℤ)
65 peano2zm 12363 . . . . . . . . . 10 ((𝑛 · 𝐴) ∈ ℤ → ((𝑛 · 𝐴) − 1) ∈ ℤ)
6663, 65syl 17 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝑛 · 𝐴) − 1) ∈ ℤ)
6755simprd 496 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝑁)
68 simprr 770 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∥ ((𝑛 · 𝐴) − 1))
6958, 53, 66, 67, 68dvdstrd 16004 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1))
70 dvdssub2 16010 . . . . . . . 8 ((((𝐴 gcd 𝑁) ∈ ℤ ∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈ ℤ) ∧ (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1))
7158, 63, 64, 69, 70syl31anc 1372 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1))
7262, 71mpbid 231 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 1)
73 dvds1 16028 . . . . . . 7 ((𝐴 gcd 𝑁) ∈ ℕ0 → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1))
7457, 73syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1))
7572, 74mpbid 231 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) = 1)
7675rexlimdvaa 3214 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) → (𝐴 gcd 𝑁) = 1))
77 simpr 485 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
7852adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑁 ∈ ℤ)
79 bezout 16251 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))
8077, 78, 79syl2anc 584 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))
81 eqeq1 2742 . . . . . . 7 ((𝐴 gcd 𝑁) = 1 → ((𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
82812rexbidv 3229 . . . . . 6 ((𝐴 gcd 𝑁) = 1 → (∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
8380, 82syl5ibcom 244 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
8452ad3antrrr 727 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℤ)
85 dvdsmul1 15987 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚))
8684, 85sylancom 588 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚))
87 zmulcl 12369 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℤ)
8884, 87sylancom 588 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℤ)
89 dvdsnegb 15983 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁 · 𝑚) ∈ ℤ) → (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚)))
9084, 88, 89syl2anc 584 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚)))
9186, 90mpbid 231 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ -(𝑁 · 𝑚))
9235adantr 481 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℤ)
9392zcnd 12427 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℂ)
94 zcn 12324 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
9594ad2antlr 724 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑛 ∈ ℂ)
9693, 95mulcomd 10996 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝐴 · 𝑛) = (𝑛 · 𝐴))
9796oveq1d 7290 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚)))
9895, 93mulcld 10995 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑛 · 𝐴) ∈ ℂ)
9988zcnd 12427 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℂ)
10098, 99subnegd 11339 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − -(𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚)))
10197, 100eqtr4d 2781 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) − -(𝑁 · 𝑚)))
102101oveq2d 7291 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚))))
10399negcld 11319 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → -(𝑁 · 𝑚) ∈ ℂ)
10498, 103nncand 11337 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚))) = -(𝑁 · 𝑚))
105102, 104eqtrd 2778 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = -(𝑁 · 𝑚))
10691, 105breqtrrd 5102 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
107 oveq2 7283 . . . . . . . . 9 (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → ((𝑛 · 𝐴) − 1) = ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
108107breq2d 5086 . . . . . . . 8 (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → (𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚)))))
109106, 108syl5ibrcom 246 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
110109rexlimdva 3213 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
111110reximdva 3203 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
11283, 111syld 47 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
11376, 112impbid 211 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ (𝐴 gcd 𝑁) = 1))
11428, 50, 1133bitrd 305 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ (𝐴 gcd 𝑁) = 1))
1158, 19, 1143bitrd 305 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  ran crn 5590   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  cc 10869  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206  0cn0 12233  cz 12319  cdvds 15963   gcd cgcd 16201  Basecbs 16912  .rcmulr 16963  1rcur 19737  Ringcrg 19783  CRingccrg 19784  rcdsr 19880  Unitcui 19881   RingHom crh 19956  ringczring 20670  ℤRHomczrh 20701  ℤ/nczn 20704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-imas 17219  df-qus 17220  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-rnghom 19959  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zn 20708
This theorem is referenced by:  znunithash  20772  znrrg  20773  dchrelbas4  26391  lgsdchr  26503  rpvmasumlem  26635  dirith  26677
  Copyright terms: Public domain W3C validator