MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znunit Structured version   Visualization version   GIF version

Theorem znunit 20139
Description: The units of ℤ/n are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
znunit.l 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
znunit ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1))

Proof of Theorem znunit
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znchr.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
21zncrng 20120 . . . 4 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
32adantr 468 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑌 ∈ CRing)
4 znunit.u . . . 4 𝑈 = (Unit‘𝑌)
5 eqid 2817 . . . 4 (1r𝑌) = (1r𝑌)
6 eqid 2817 . . . 4 (∥r𝑌) = (∥r𝑌)
74, 5, 6crngunit 18884 . . 3 (𝑌 ∈ CRing → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐿𝐴)(∥r𝑌)(1r𝑌)))
83, 7syl 17 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐿𝐴)(∥r𝑌)(1r𝑌)))
9 eqid 2817 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
10 znunit.l . . . . . . 7 𝐿 = (ℤRHom‘𝑌)
111, 9, 10znzrhfo 20123 . . . . . 6 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑌))
1211adantr 468 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿:ℤ–onto→(Base‘𝑌))
13 fof 6341 . . . . 5 (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
1412, 13syl 17 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿:ℤ⟶(Base‘𝑌))
15 ffvelrn 6589 . . . 4 ((𝐿:ℤ⟶(Base‘𝑌) ∧ 𝐴 ∈ ℤ) → (𝐿𝐴) ∈ (Base‘𝑌))
1614, 15sylancom 578 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) ∈ (Base‘𝑌))
17 eqid 2817 . . . 4 (.r𝑌) = (.r𝑌)
189, 6, 17dvdsr2 18869 . . 3 ((𝐿𝐴) ∈ (Base‘𝑌) → ((𝐿𝐴)(∥r𝑌)(1r𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
1916, 18syl 17 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴)(∥r𝑌)(1r𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
20 forn 6344 . . . . . 6 (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌))
2112, 20syl 17 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ran 𝐿 = (Base‘𝑌))
2221rexeqdv 3345 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
23 ffn 6266 . . . . 5 (𝐿:ℤ⟶(Base‘𝑌) → 𝐿 Fn ℤ)
24 oveq1 6891 . . . . . . 7 (𝑥 = (𝐿𝑛) → (𝑥(.r𝑌)(𝐿𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
2524eqeq1d 2819 . . . . . 6 (𝑥 = (𝐿𝑛) → ((𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
2625rexrn 6593 . . . . 5 (𝐿 Fn ℤ → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
2714, 23, 263syl 18 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
2822, 27bitr3d 272 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
29 crngring 18780 . . . . . . . . . 10 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
303, 29syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑌 ∈ Ring)
3110zrhrhm 20088 . . . . . . . . 9 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
3230, 31syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌))
3332adantr 468 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌))
34 simpr 473 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
35 simplr 776 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐴 ∈ ℤ)
36 zringbas 20052 . . . . . . . 8 ℤ = (Base‘ℤring)
37 zringmulr 20055 . . . . . . . 8 · = (.r‘ℤring)
3836, 37, 17rhmmul 18951 . . . . . . 7 ((𝐿 ∈ (ℤring RingHom 𝑌) ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐿‘(𝑛 · 𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
3933, 34, 35, 38syl3anc 1483 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐿‘(𝑛 · 𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
4030adantr 468 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑌 ∈ Ring)
4110, 5zrh1 20089 . . . . . . 7 (𝑌 ∈ Ring → (𝐿‘1) = (1r𝑌))
4240, 41syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐿‘1) = (1r𝑌))
4339, 42eqeq12d 2832 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
44 simpll 774 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℕ0)
4534, 35zmulcld 11774 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝐴) ∈ ℤ)
46 1zzd 11694 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ)
471, 10zndvds 20125 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
4844, 45, 46, 47syl3anc 1483 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
4943, 48bitr3d 272 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
5049rexbidva 3248 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
51 simplr 776 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝐴 ∈ ℤ)
52 nn0z 11686 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
5352ad2antrr 708 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∈ ℤ)
54 gcddvds 15464 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁))
5551, 53, 54syl2anc 575 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁))
5655simpld 484 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝐴)
5751, 53gcdcld 15469 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈ ℕ0)
5857nn0zd 11766 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈ ℤ)
5934adantrr 699 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑛 ∈ ℤ)
60 dvdsmultr2 15264 . . . . . . . . 9 (((𝐴 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴)))
6158, 59, 51, 60syl3anc 1483 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴)))
6256, 61mpd 15 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴))
6345adantrr 699 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝑛 · 𝐴) ∈ ℤ)
64 1zzd 11694 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 1 ∈ ℤ)
6555simprd 485 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝑁)
66 simprr 780 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∥ ((𝑛 · 𝐴) − 1))
67 peano2zm 11706 . . . . . . . . . . 11 ((𝑛 · 𝐴) ∈ ℤ → ((𝑛 · 𝐴) − 1) ∈ ℤ)
6863, 67syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝑛 · 𝐴) − 1) ∈ ℤ)
69 dvdstr 15261 . . . . . . . . . 10 (((𝐴 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑛 · 𝐴) − 1) ∈ ℤ) → (((𝐴 gcd 𝑁) ∥ 𝑁𝑁 ∥ ((𝑛 · 𝐴) − 1)) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)))
7058, 53, 68, 69syl3anc 1483 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (((𝐴 gcd 𝑁) ∥ 𝑁𝑁 ∥ ((𝑛 · 𝐴) − 1)) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)))
7165, 66, 70mp2and 682 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1))
72 dvdssub2 15266 . . . . . . . 8 ((((𝐴 gcd 𝑁) ∈ ℤ ∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈ ℤ) ∧ (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1))
7358, 63, 64, 71, 72syl31anc 1485 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1))
7462, 73mpbid 223 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 1)
75 dvds1 15284 . . . . . . 7 ((𝐴 gcd 𝑁) ∈ ℕ0 → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1))
7657, 75syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1))
7774, 76mpbid 223 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) = 1)
7877rexlimdvaa 3231 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) → (𝐴 gcd 𝑁) = 1))
79 simpr 473 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
8052adantr 468 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑁 ∈ ℤ)
81 bezout 15499 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))
8279, 80, 81syl2anc 575 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))
83 eqeq1 2821 . . . . . . 7 ((𝐴 gcd 𝑁) = 1 → ((𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
84832rexbidv 3256 . . . . . 6 ((𝐴 gcd 𝑁) = 1 → (∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
8582, 84syl5ibcom 236 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
8652ad3antrrr 712 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℤ)
87 dvdsmul1 15246 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚))
8886, 87sylancom 578 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚))
89 zmulcl 11712 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℤ)
9086, 89sylancom 578 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℤ)
91 dvdsnegb 15242 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁 · 𝑚) ∈ ℤ) → (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚)))
9286, 90, 91syl2anc 575 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚)))
9388, 92mpbid 223 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ -(𝑁 · 𝑚))
9435adantr 468 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℤ)
9594zcnd 11769 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℂ)
96 zcn 11668 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
9796ad2antlr 709 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑛 ∈ ℂ)
9895, 97mulcomd 10356 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝐴 · 𝑛) = (𝑛 · 𝐴))
9998oveq1d 6899 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚)))
10097, 95mulcld 10355 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑛 · 𝐴) ∈ ℂ)
10190zcnd 11769 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℂ)
102100, 101subnegd 10694 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − -(𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚)))
10399, 102eqtr4d 2854 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) − -(𝑁 · 𝑚)))
104103oveq2d 6900 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚))))
105101negcld 10674 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → -(𝑁 · 𝑚) ∈ ℂ)
106100, 105nncand 10692 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚))) = -(𝑁 · 𝑚))
107104, 106eqtrd 2851 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = -(𝑁 · 𝑚))
10893, 107breqtrrd 4883 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
109 oveq2 6892 . . . . . . . . 9 (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → ((𝑛 · 𝐴) − 1) = ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
110109breq2d 4867 . . . . . . . 8 (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → (𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚)))))
111108, 110syl5ibrcom 238 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
112111rexlimdva 3230 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
113112reximdva 3215 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
11485, 113syld 47 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
11578, 114impbid 203 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ (𝐴 gcd 𝑁) = 1))
11628, 50, 1153bitrd 296 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ (𝐴 gcd 𝑁) = 1))
1178, 19, 1163bitrd 296 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2157  wrex 3108   class class class wbr 4855  ran crn 5325   Fn wfn 6106  wf 6107  ontowfo 6109  cfv 6111  (class class class)co 6884  cc 10229  1c1 10232   + caddc 10234   · cmul 10236  cmin 10561  -cneg 10562  0cn0 11579  cz 11663  cdvds 15223   gcd cgcd 15455  Basecbs 16088  .rcmulr 16174  1rcur 18723  Ringcrg 18769  CRingccrg 18770  rcdsr 18860  Unitcui 18861   RingHom crh 18936  ringzring 20046  ℤRHomczrh 20076  ℤ/nczn 20079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-inf2 8795  ax-cnex 10287  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308  ax-pre-sup 10309  ax-addf 10310  ax-mulf 10311
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-ord 5953  df-on 5954  df-lim 5955  df-suc 5956  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-om 7306  df-1st 7408  df-2nd 7409  df-tpos 7597  df-wrecs 7652  df-recs 7714  df-rdg 7752  df-1o 7806  df-oadd 7810  df-er 7989  df-ec 7991  df-qs 7995  df-map 8104  df-en 8203  df-dom 8204  df-sdom 8205  df-fin 8206  df-sup 8597  df-inf 8598  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564  df-div 10980  df-nn 11316  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11580  df-z 11664  df-dec 11780  df-uz 11925  df-rp 12067  df-fz 12570  df-fl 12837  df-mod 12913  df-seq 13045  df-exp 13104  df-cj 14082  df-re 14083  df-im 14084  df-sqrt 14218  df-abs 14219  df-dvds 15224  df-gcd 15456  df-struct 16090  df-ndx 16091  df-slot 16092  df-base 16094  df-sets 16095  df-ress 16096  df-plusg 16186  df-mulr 16187  df-starv 16188  df-sca 16189  df-vsca 16190  df-ip 16191  df-tset 16192  df-ple 16193  df-ds 16195  df-unif 16196  df-0g 16327  df-imas 16393  df-qus 16394  df-mgm 17467  df-sgrp 17509  df-mnd 17520  df-mhm 17560  df-grp 17650  df-minusg 17651  df-sbg 17652  df-mulg 17766  df-subg 17813  df-nsg 17814  df-eqg 17815  df-ghm 17880  df-cmn 18416  df-abl 18417  df-mgp 18712  df-ur 18724  df-ring 18771  df-cring 18772  df-oppr 18845  df-dvdsr 18863  df-unit 18864  df-rnghom 18939  df-subrg 19002  df-lmod 19089  df-lss 19157  df-lsp 19199  df-sra 19401  df-rgmod 19402  df-lidl 19403  df-rsp 19404  df-2idl 19461  df-cnfld 19975  df-zring 20047  df-zrh 20080  df-zn 20083
This theorem is referenced by:  znunithash  20140  znrrg  20141  dchrelbas4  25205  lgsdchr  25317  rpvmasumlem  25413  dirith  25455
  Copyright terms: Public domain W3C validator