Step | Hyp | Ref
| Expression |
1 | | znchr.y |
. . . . 5
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
2 | 1 | zncrng 20664 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ 𝑌 ∈
CRing) |
3 | 2 | adantr 480 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑌 ∈
CRing) |
4 | | znunit.u |
. . . 4
⊢ 𝑈 = (Unit‘𝑌) |
5 | | eqid 2738 |
. . . 4
⊢
(1r‘𝑌) = (1r‘𝑌) |
6 | | eqid 2738 |
. . . 4
⊢
(∥r‘𝑌) = (∥r‘𝑌) |
7 | 4, 5, 6 | crngunit 19819 |
. . 3
⊢ (𝑌 ∈ CRing → ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐿‘𝐴)(∥r‘𝑌)(1r‘𝑌))) |
8 | 3, 7 | syl 17 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐿‘𝐴)(∥r‘𝑌)(1r‘𝑌))) |
9 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑌) =
(Base‘𝑌) |
10 | | znunit.l |
. . . . . . 7
⊢ 𝐿 = (ℤRHom‘𝑌) |
11 | 1, 9, 10 | znzrhfo 20667 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝐿:ℤ–onto→(Base‘𝑌)) |
12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐿:ℤ–onto→(Base‘𝑌)) |
13 | | fof 6672 |
. . . . 5
⊢ (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
14 | 12, 13 | syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐿:ℤ⟶(Base‘𝑌)) |
15 | | ffvelrn 6941 |
. . . 4
⊢ ((𝐿:ℤ⟶(Base‘𝑌) ∧ 𝐴 ∈ ℤ) → (𝐿‘𝐴) ∈ (Base‘𝑌)) |
16 | 14, 15 | sylancom 587 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (𝐿‘𝐴) ∈ (Base‘𝑌)) |
17 | | eqid 2738 |
. . . 4
⊢
(.r‘𝑌) = (.r‘𝑌) |
18 | 9, 6, 17 | dvdsr2 19804 |
. . 3
⊢ ((𝐿‘𝐴) ∈ (Base‘𝑌) → ((𝐿‘𝐴)(∥r‘𝑌)(1r‘𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
19 | 16, 18 | syl 17 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐿‘𝐴)(∥r‘𝑌)(1r‘𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
20 | | forn 6675 |
. . . . . 6
⊢ (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌)) |
21 | 12, 20 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ran 𝐿 =
(Base‘𝑌)) |
22 | 21 | rexeqdv 3340 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈ ran
𝐿(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
23 | | ffn 6584 |
. . . . 5
⊢ (𝐿:ℤ⟶(Base‘𝑌) → 𝐿 Fn ℤ) |
24 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑥 = (𝐿‘𝑛) → (𝑥(.r‘𝑌)(𝐿‘𝐴)) = ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴))) |
25 | 24 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑥 = (𝐿‘𝑛) → ((𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
26 | 25 | rexrn 6945 |
. . . . 5
⊢ (𝐿 Fn ℤ → (∃𝑥 ∈ ran 𝐿(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
27 | 14, 23, 26 | 3syl 18 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈ ran
𝐿(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
28 | 22, 27 | bitr3d 280 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈
(Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
29 | | crngring 19710 |
. . . . . . . . . 10
⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) |
30 | 3, 29 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑌 ∈
Ring) |
31 | 10 | zrhrhm 20625 |
. . . . . . . . 9
⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring
RingHom 𝑌)) |
32 | 30, 31 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐿 ∈
(ℤring RingHom 𝑌)) |
33 | 32 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝐿 ∈
(ℤring RingHom 𝑌)) |
34 | | simpr 484 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝑛 ∈
ℤ) |
35 | | simplr 765 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝐴 ∈
ℤ) |
36 | | zringbas 20588 |
. . . . . . . 8
⊢ ℤ =
(Base‘ℤring) |
37 | | zringmulr 20591 |
. . . . . . . 8
⊢ ·
= (.r‘ℤring) |
38 | 36, 37, 17 | rhmmul 19886 |
. . . . . . 7
⊢ ((𝐿 ∈ (ℤring
RingHom 𝑌) ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐿‘(𝑛 · 𝐴)) = ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴))) |
39 | 33, 34, 35, 38 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (𝐿‘(𝑛 · 𝐴)) = ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴))) |
40 | 30 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝑌 ∈
Ring) |
41 | 10, 5 | zrh1 20626 |
. . . . . . 7
⊢ (𝑌 ∈ Ring → (𝐿‘1) =
(1r‘𝑌)) |
42 | 40, 41 | syl 17 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (𝐿‘1) =
(1r‘𝑌)) |
43 | 39, 42 | eqeq12d 2754 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌))) |
44 | | simpll 763 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 𝑁 ∈
ℕ0) |
45 | 34, 35 | zmulcld 12361 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (𝑛 · 𝐴) ∈
ℤ) |
46 | | 1zzd 12281 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ 1 ∈ ℤ) |
47 | 1, 10 | zndvds 20669 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈
ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
48 | 44, 45, 46, 47 | syl3anc 1369 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
49 | 43, 48 | bitr3d 280 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
50 | 49 | rexbidva 3224 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ ((𝐿‘𝑛)(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
51 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝐴 ∈ ℤ) |
52 | | nn0z 12273 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
53 | 52 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∈ ℤ) |
54 | | gcddvds 16138 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁)) |
55 | 51, 53, 54 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁)) |
56 | 55 | simpld 494 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝐴) |
57 | 51, 53 | gcdcld 16143 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈
ℕ0) |
58 | 57 | nn0zd 12353 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈ ℤ) |
59 | 34 | adantrr 713 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑛 ∈ ℤ) |
60 | | dvdsmultr2 15935 |
. . . . . . . . 9
⊢ (((𝐴 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴))) |
61 | 58, 59, 51, 60 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴))) |
62 | 56, 61 | mpd 15 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴)) |
63 | 45 | adantrr 713 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝑛 · 𝐴) ∈ ℤ) |
64 | | 1zzd 12281 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 1 ∈
ℤ) |
65 | | peano2zm 12293 |
. . . . . . . . . 10
⊢ ((𝑛 · 𝐴) ∈ ℤ → ((𝑛 · 𝐴) − 1) ∈
ℤ) |
66 | 63, 65 | syl 17 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝑛 · 𝐴) − 1) ∈
ℤ) |
67 | 55 | simprd 495 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝑁) |
68 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∥ ((𝑛 · 𝐴) − 1)) |
69 | 58, 53, 66, 67, 68 | dvdstrd 15932 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)) |
70 | | dvdssub2 15938 |
. . . . . . . 8
⊢ ((((𝐴 gcd 𝑁) ∈ ℤ ∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈ ℤ)
∧ (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1)) |
71 | 58, 63, 64, 69, 70 | syl31anc 1371 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1)) |
72 | 62, 71 | mpbid 231 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 1) |
73 | | dvds1 15956 |
. . . . . . 7
⊢ ((𝐴 gcd 𝑁) ∈ ℕ0 → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1)) |
74 | 57, 73 | syl 17 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1)) |
75 | 72, 74 | mpbid 231 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ (𝑛 ∈ ℤ
∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) = 1) |
76 | 75 | rexlimdvaa 3213 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) → (𝐴 gcd 𝑁) = 1)) |
77 | | simpr 484 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝐴 ∈
ℤ) |
78 | 52 | adantr 480 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ 𝑁 ∈
ℤ) |
79 | | bezout 16179 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
∃𝑛 ∈ ℤ
∃𝑚 ∈ ℤ
(𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚))) |
80 | 77, 78, 79 | syl2anc 583 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ∃𝑛 ∈
ℤ ∃𝑚 ∈
ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚))) |
81 | | eqeq1 2742 |
. . . . . . 7
⊢ ((𝐴 gcd 𝑁) = 1 → ((𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
82 | 81 | 2rexbidv 3228 |
. . . . . 6
⊢ ((𝐴 gcd 𝑁) = 1 → (∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
83 | 80, 82 | syl5ibcom 244 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
84 | 52 | ad3antrrr 726 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∈
ℤ) |
85 | | dvdsmul1 15915 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚)) |
86 | 84, 85 | sylancom 587 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∥ (𝑁 · 𝑚)) |
87 | | zmulcl 12299 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℤ) |
88 | 84, 87 | sylancom 587 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑁 · 𝑚) ∈
ℤ) |
89 | | dvdsnegb 15911 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ (𝑁 · 𝑚) ∈ ℤ) → (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚))) |
90 | 84, 88, 89 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚))) |
91 | 86, 90 | mpbid 231 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∥ -(𝑁 · 𝑚)) |
92 | 35 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝐴 ∈
ℤ) |
93 | 92 | zcnd 12356 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝐴 ∈
ℂ) |
94 | | zcn 12254 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) |
95 | 94 | ad2antlr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑛 ∈
ℂ) |
96 | 93, 95 | mulcomd 10927 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝐴 · 𝑛) = (𝑛 · 𝐴)) |
97 | 96 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚))) |
98 | 95, 93 | mulcld 10926 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑛 · 𝐴) ∈
ℂ) |
99 | 88 | zcnd 12356 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (𝑁 · 𝑚) ∈
ℂ) |
100 | 98, 99 | subnegd 11269 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − -(𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚))) |
101 | 97, 100 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) − -(𝑁 · 𝑚))) |
102 | 101 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚)))) |
103 | 99 | negcld 11249 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ -(𝑁 · 𝑚) ∈
ℂ) |
104 | 98, 103 | nncand 11267 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚))) = -(𝑁 · 𝑚)) |
105 | 102, 104 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = -(𝑁 · 𝑚)) |
106 | 91, 105 | breqtrrd 5098 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
107 | | oveq2 7263 |
. . . . . . . . 9
⊢ (1 =
((𝐴 · 𝑛) + (𝑁 · 𝑚)) → ((𝑛 · 𝐴) − 1) = ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚)))) |
108 | 107 | breq2d 5082 |
. . . . . . . 8
⊢ (1 =
((𝐴 · 𝑛) + (𝑁 · 𝑚)) → (𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))))) |
109 | 106, 108 | syl5ibrcom 246 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
∧ 𝑚 ∈ ℤ)
→ (1 = ((𝐴 ·
𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
110 | 109 | rexlimdva 3212 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
∧ 𝑛 ∈ ℤ)
→ (∃𝑚 ∈
ℤ 1 = ((𝐴 ·
𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
111 | 110 | reximdva 3202 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ ∃𝑚 ∈
ℤ 1 = ((𝐴 ·
𝑛) + (𝑁 · 𝑚)) → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
112 | 83, 111 | syld 47 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) |
113 | 76, 112 | impbid 211 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑛 ∈
ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ (𝐴 gcd 𝑁) = 1)) |
114 | 28, 50, 113 | 3bitrd 304 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (∃𝑥 ∈
(Base‘𝑌)(𝑥(.r‘𝑌)(𝐿‘𝐴)) = (1r‘𝑌) ↔ (𝐴 gcd 𝑁) = 1)) |
115 | 8, 19, 114 | 3bitrd 304 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ ((𝐿‘𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1)) |