![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eftval | Structured version Visualization version GIF version |
Description: The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
eftval.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
Ref | Expression |
---|---|
eftval | ⊢ (𝑁 ∈ ℕ0 → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7416 | . . 3 ⊢ (𝑛 = 𝑁 → (𝐴↑𝑛) = (𝐴↑𝑁)) | |
2 | fveq2 6891 | . . 3 ⊢ (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁)) | |
3 | 1, 2 | oveq12d 7426 | . 2 ⊢ (𝑛 = 𝑁 → ((𝐴↑𝑛) / (!‘𝑛)) = ((𝐴↑𝑁) / (!‘𝑁))) |
4 | eftval.1 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
5 | ovex 7441 | . 2 ⊢ ((𝐴↑𝑁) / (!‘𝑁)) ∈ V | |
6 | 3, 4, 5 | fvmpt 6998 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7408 / cdiv 11870 ℕ0cn0 12471 ↑cexp 14026 !cfa 14232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 |
This theorem is referenced by: efcllem 16020 ef0lem 16021 eff 16024 efval2 16026 efcvg 16027 efcvgfsum 16028 reefcl 16029 efcj 16034 efaddlem 16035 eftlcvg 16048 eftlcl 16049 reeftlcl 16050 eftlub 16051 efsep 16052 effsumlt 16053 efgt1p2 16056 efgt1p 16057 eflegeo 16063 eirrlem 16146 subfaclim 34174 |
Copyright terms: Public domain | W3C validator |