| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eftval | Structured version Visualization version GIF version | ||
| Description: The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| Ref | Expression |
|---|---|
| eftval.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
| Ref | Expression |
|---|---|
| eftval | ⊢ (𝑁 ∈ ℕ0 → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7411 | . . 3 ⊢ (𝑛 = 𝑁 → (𝐴↑𝑛) = (𝐴↑𝑁)) | |
| 2 | fveq2 6875 | . . 3 ⊢ (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁)) | |
| 3 | 1, 2 | oveq12d 7421 | . 2 ⊢ (𝑛 = 𝑁 → ((𝐴↑𝑛) / (!‘𝑛)) = ((𝐴↑𝑁) / (!‘𝑁))) |
| 4 | eftval.1 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
| 5 | ovex 7436 | . 2 ⊢ ((𝐴↑𝑁) / (!‘𝑁)) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6985 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5201 ‘cfv 6530 (class class class)co 7403 / cdiv 11892 ℕ0cn0 12499 ↑cexp 14077 !cfa 14289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 |
| This theorem is referenced by: efcllem 16091 ef0lem 16092 eff 16095 efval2 16098 efcvg 16099 efcvgfsum 16100 reefcl 16101 efcj 16106 efaddlem 16107 eftlcvg 16122 eftlcl 16123 reeftlcl 16124 eftlub 16125 efsep 16126 effsumlt 16127 efgt1p2 16130 efgt1p 16131 eflegeo 16137 eirrlem 16220 subfaclim 35156 |
| Copyright terms: Public domain | W3C validator |