MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eftval Structured version   Visualization version   GIF version

Theorem eftval 16124
Description: The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
eftval.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
eftval (𝑁 ∈ ℕ0 → (𝐹𝑁) = ((𝐴𝑁) / (!‘𝑁)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem eftval
StepHypRef Expression
1 oveq2 7456 . . 3 (𝑛 = 𝑁 → (𝐴𝑛) = (𝐴𝑁))
2 fveq2 6920 . . 3 (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁))
31, 2oveq12d 7466 . 2 (𝑛 = 𝑁 → ((𝐴𝑛) / (!‘𝑛)) = ((𝐴𝑁) / (!‘𝑁)))
4 eftval.1 . 2 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
5 ovex 7481 . 2 ((𝐴𝑁) / (!‘𝑁)) ∈ V
63, 4, 5fvmpt 7029 1 (𝑁 ∈ ℕ0 → (𝐹𝑁) = ((𝐴𝑁) / (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cmpt 5249  cfv 6573  (class class class)co 7448   / cdiv 11947  0cn0 12553  cexp 14112  !cfa 14322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451
This theorem is referenced by:  efcllem  16125  ef0lem  16126  eff  16129  efval2  16132  efcvg  16133  efcvgfsum  16134  reefcl  16135  efcj  16140  efaddlem  16141  eftlcvg  16154  eftlcl  16155  reeftlcl  16156  eftlub  16157  efsep  16158  effsumlt  16159  efgt1p2  16162  efgt1p  16163  eflegeo  16169  eirrlem  16252  subfaclim  35156
  Copyright terms: Public domain W3C validator