| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eftval | Structured version Visualization version GIF version | ||
| Description: The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| Ref | Expression |
|---|---|
| eftval.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
| Ref | Expression |
|---|---|
| eftval | ⊢ (𝑁 ∈ ℕ0 → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7395 | . . 3 ⊢ (𝑛 = 𝑁 → (𝐴↑𝑛) = (𝐴↑𝑁)) | |
| 2 | fveq2 6858 | . . 3 ⊢ (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁)) | |
| 3 | 1, 2 | oveq12d 7405 | . 2 ⊢ (𝑛 = 𝑁 → ((𝐴↑𝑛) / (!‘𝑛)) = ((𝐴↑𝑁) / (!‘𝑁))) |
| 4 | eftval.1 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
| 5 | ovex 7420 | . 2 ⊢ ((𝐴↑𝑁) / (!‘𝑁)) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6968 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 / cdiv 11835 ℕ0cn0 12442 ↑cexp 14026 !cfa 14238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: efcllem 16043 ef0lem 16044 eff 16047 efval2 16050 efcvg 16051 efcvgfsum 16052 reefcl 16053 efcj 16058 efaddlem 16059 eftlcvg 16074 eftlcl 16075 reeftlcl 16076 eftlub 16077 efsep 16078 effsumlt 16079 efgt1p2 16082 efgt1p 16083 eflegeo 16089 eirrlem 16172 subfaclim 35175 |
| Copyright terms: Public domain | W3C validator |