MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eftval Structured version   Visualization version   GIF version

Theorem eftval 15714
Description: The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
eftval.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
eftval (𝑁 ∈ ℕ0 → (𝐹𝑁) = ((𝐴𝑁) / (!‘𝑁)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem eftval
StepHypRef Expression
1 oveq2 7263 . . 3 (𝑛 = 𝑁 → (𝐴𝑛) = (𝐴𝑁))
2 fveq2 6756 . . 3 (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁))
31, 2oveq12d 7273 . 2 (𝑛 = 𝑁 → ((𝐴𝑛) / (!‘𝑛)) = ((𝐴𝑁) / (!‘𝑁)))
4 eftval.1 . 2 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
5 ovex 7288 . 2 ((𝐴𝑁) / (!‘𝑁)) ∈ V
63, 4, 5fvmpt 6857 1 (𝑁 ∈ ℕ0 → (𝐹𝑁) = ((𝐴𝑁) / (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cmpt 5153  cfv 6418  (class class class)co 7255   / cdiv 11562  0cn0 12163  cexp 13710  !cfa 13915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258
This theorem is referenced by:  efcllem  15715  ef0lem  15716  eff  15719  efval2  15721  efcvg  15722  efcvgfsum  15723  reefcl  15724  efcj  15729  efaddlem  15730  eftlcvg  15743  eftlcl  15744  reeftlcl  15745  eftlub  15746  efsep  15747  effsumlt  15748  efgt1p2  15751  efgt1p  15752  eflegeo  15758  eirrlem  15841  subfaclim  33050
  Copyright terms: Public domain W3C validator