![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eftval | Structured version Visualization version GIF version |
Description: The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
eftval.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
Ref | Expression |
---|---|
eftval | ⊢ (𝑁 ∈ ℕ0 → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7438 | . . 3 ⊢ (𝑛 = 𝑁 → (𝐴↑𝑛) = (𝐴↑𝑁)) | |
2 | fveq2 6906 | . . 3 ⊢ (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁)) | |
3 | 1, 2 | oveq12d 7448 | . 2 ⊢ (𝑛 = 𝑁 → ((𝐴↑𝑛) / (!‘𝑛)) = ((𝐴↑𝑁) / (!‘𝑁))) |
4 | eftval.1 | . 2 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
5 | ovex 7463 | . 2 ⊢ ((𝐴↑𝑁) / (!‘𝑁)) ∈ V | |
6 | 3, 4, 5 | fvmpt 7015 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ↦ cmpt 5230 ‘cfv 6562 (class class class)co 7430 / cdiv 11917 ℕ0cn0 12523 ↑cexp 14098 !cfa 14308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-ov 7433 |
This theorem is referenced by: efcllem 16109 ef0lem 16110 eff 16113 efval2 16116 efcvg 16117 efcvgfsum 16118 reefcl 16119 efcj 16124 efaddlem 16125 eftlcvg 16138 eftlcl 16139 reeftlcl 16140 eftlub 16141 efsep 16142 effsumlt 16143 efgt1p2 16146 efgt1p 16147 eflegeo 16153 eirrlem 16236 subfaclim 35172 |
Copyright terms: Public domain | W3C validator |