MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eftval Structured version   Visualization version   GIF version

Theorem eftval 16027
Description: The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
eftval.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
eftval (𝑁 ∈ ℕ0 → (𝐹𝑁) = ((𝐴𝑁) / (!‘𝑁)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem eftval
StepHypRef Expression
1 oveq2 7420 . . 3 (𝑛 = 𝑁 → (𝐴𝑛) = (𝐴𝑁))
2 fveq2 6891 . . 3 (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁))
31, 2oveq12d 7430 . 2 (𝑛 = 𝑁 → ((𝐴𝑛) / (!‘𝑛)) = ((𝐴𝑁) / (!‘𝑁)))
4 eftval.1 . 2 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
5 ovex 7445 . 2 ((𝐴𝑁) / (!‘𝑁)) ∈ V
63, 4, 5fvmpt 6998 1 (𝑁 ∈ ℕ0 → (𝐹𝑁) = ((𝐴𝑁) / (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cmpt 5231  cfv 6543  (class class class)co 7412   / cdiv 11878  0cn0 12479  cexp 14034  !cfa 14240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415
This theorem is referenced by:  efcllem  16028  ef0lem  16029  eff  16032  efval2  16034  efcvg  16035  efcvgfsum  16036  reefcl  16037  efcj  16042  efaddlem  16043  eftlcvg  16056  eftlcl  16057  reeftlcl  16058  eftlub  16059  efsep  16060  effsumlt  16061  efgt1p2  16064  efgt1p  16065  eflegeo  16071  eirrlem  16154  subfaclim  34643
  Copyright terms: Public domain W3C validator