![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reeftlcl | Structured version Visualization version GIF version |
Description: Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
eftl.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
Ref | Expression |
---|---|
reeftlcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . 2 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
2 | nn0z 12587 | . . 3 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ) | |
3 | 2 | adantl 481 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ) |
4 | eqidd 2727 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
5 | eluznn0 12905 | . . . . 5 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℕ0) | |
6 | 5 | adantll 711 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℕ0) |
7 | eftl.1 | . . . . 5 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
8 | 7 | eftval 16026 | . . . 4 ⊢ (𝑘 ∈ ℕ0 → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
10 | simpll 764 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℝ) | |
11 | reeftcl 16024 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) | |
12 | 10, 6, 11 | syl2anc 583 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) |
13 | 9, 12 | eqeltrd 2827 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℝ) |
14 | recn 11202 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
15 | 7 | eftlcvg 16056 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
16 | 14, 15 | sylan 579 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
17 | 1, 3, 4, 13, 16 | isumrecl 15717 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5224 dom cdm 5669 ‘cfv 6537 (class class class)co 7405 ℂcc 11110 ℝcr 11111 + caddc 11115 / cdiv 11875 ℕ0cn0 12476 ℤcz 12562 ℤ≥cuz 12826 seqcseq 13972 ↑cexp 14032 !cfa 14238 ⇝ cli 15434 Σcsu 15638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-ico 13336 df-fz 13491 df-fzo 13634 df-fl 13763 df-seq 13973 df-exp 14033 df-fac 14239 df-hash 14296 df-shft 15020 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-limsup 15421 df-clim 15438 df-rlim 15439 df-sum 15639 |
This theorem is referenced by: eftlub 16059 |
Copyright terms: Public domain | W3C validator |