MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcllem Structured version   Visualization version   GIF version

Theorem efcllem 15715
Description: Lemma for efcl 15720. The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat 15523 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Proof shortened by AV, 9-Jul-2022.)
Hypothesis
Ref Expression
eftval.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
efcllem (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem efcllem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12549 . 2 0 = (ℤ‘0)
2 eqid 2738 . 2 (ℤ‘(⌊‘(2 · (abs‘𝐴)))) = (ℤ‘(⌊‘(2 · (abs‘𝐴))))
3 halfre 12117 . . 3 (1 / 2) ∈ ℝ
43a1i 11 . 2 (𝐴 ∈ ℂ → (1 / 2) ∈ ℝ)
5 halflt1 12121 . . 3 (1 / 2) < 1
65a1i 11 . 2 (𝐴 ∈ ℂ → (1 / 2) < 1)
7 2re 11977 . . . 4 2 ∈ ℝ
8 abscl 14918 . . . 4 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
9 remulcl 10887 . . . 4 ((2 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (2 · (abs‘𝐴)) ∈ ℝ)
107, 8, 9sylancr 586 . . 3 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) ∈ ℝ)
117a1i 11 . . . 4 (𝐴 ∈ ℂ → 2 ∈ ℝ)
12 0le2 12005 . . . . 5 0 ≤ 2
1312a1i 11 . . . 4 (𝐴 ∈ ℂ → 0 ≤ 2)
14 absge0 14927 . . . 4 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
1511, 8, 13, 14mulge0d 11482 . . 3 (𝐴 ∈ ℂ → 0 ≤ (2 · (abs‘𝐴)))
16 flge0nn0 13468 . . 3 (((2 · (abs‘𝐴)) ∈ ℝ ∧ 0 ≤ (2 · (abs‘𝐴))) → (⌊‘(2 · (abs‘𝐴))) ∈ ℕ0)
1710, 15, 16syl2anc 583 . 2 (𝐴 ∈ ℂ → (⌊‘(2 · (abs‘𝐴))) ∈ ℕ0)
18 eftval.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1918eftval 15714 . . . 4 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
2019adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
21 eftcl 15711 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
2220, 21eqeltrd 2839 . 2 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
238adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘𝐴) ∈ ℝ)
24 eluznn0 12586 . . . . . . 7 (((⌊‘(2 · (abs‘𝐴))) ∈ ℕ0𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 𝑘 ∈ ℕ0)
2517, 24sylan 579 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 𝑘 ∈ ℕ0)
26 nn0p1nn 12202 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2725, 26syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℕ)
2823, 27nndivred 11957 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ)
293a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (1 / 2) ∈ ℝ)
3023, 25reexpcld 13809 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
3125faccld 13926 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℕ)
3230, 31nndivred 11957 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
33 expcl 13728 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3425, 33syldan 590 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐴𝑘) ∈ ℂ)
3534absge0d 15084 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (abs‘(𝐴𝑘)))
36 absexp 14944 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3725, 36syldan 590 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3835, 37breqtrd 5096 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ ((abs‘𝐴)↑𝑘))
3931nnred 11918 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℝ)
4031nngt0d 11952 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 < (!‘𝑘))
41 divge0 11774 . . . . 5 (((((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑘)) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4230, 38, 39, 40, 41syl22anc 835 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4310adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) ∈ ℝ)
44 peano2nn0 12203 . . . . . . . . . . 11 ((⌊‘(2 · (abs‘𝐴))) ∈ ℕ0 → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℕ0)
4517, 44syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℕ0)
4645nn0red 12224 . . . . . . . . 9 (𝐴 ∈ ℂ → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℝ)
4746adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℝ)
4827nnred 11918 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℝ)
49 flltp1 13448 . . . . . . . . 9 ((2 · (abs‘𝐴)) ∈ ℝ → (2 · (abs‘𝐴)) < ((⌊‘(2 · (abs‘𝐴))) + 1))
5043, 49syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) < ((⌊‘(2 · (abs‘𝐴))) + 1))
51 eluzp1p1 12539 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴)))) → (𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)))
5251adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)))
53 eluzle 12524 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)) → ((⌊‘(2 · (abs‘𝐴))) + 1) ≤ (𝑘 + 1))
5452, 53syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((⌊‘(2 · (abs‘𝐴))) + 1) ≤ (𝑘 + 1))
5543, 47, 48, 50, 54ltletrd 11065 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) < (𝑘 + 1))
5623recnd 10934 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘𝐴) ∈ ℂ)
57 2cn 11978 . . . . . . . 8 2 ∈ ℂ
58 mulcom 10888 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
5956, 57, 58sylancl 585 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6027nncnd 11919 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℂ)
6160mulid2d 10924 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (1 · (𝑘 + 1)) = (𝑘 + 1))
6255, 59, 613brtr4d 5102 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) · 2) < (1 · (𝑘 + 1)))
63 2rp 12664 . . . . . . . 8 2 ∈ ℝ+
6463a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 2 ∈ ℝ+)
65 1red 10907 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 1 ∈ ℝ)
6627nnrpd 12699 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℝ+)
6723, 64, 65, 66lt2mul2divd 12770 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴) · 2) < (1 · (𝑘 + 1)) ↔ ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2)))
6862, 67mpbid 231 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2))
69 ltle 10994 . . . . . 6 ((((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7028, 3, 69sylancl 585 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7168, 70mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2))
7228, 29, 32, 42, 71lemul2ad 11845 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) ≤ ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
73 peano2nn0 12203 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
7425, 73syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℕ0)
7518eftval 15714 . . . . . 6 ((𝑘 + 1) ∈ ℕ0 → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7674, 75syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7776fveq2d 6760 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))))
78 absexp 14944 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
7974, 78syldan 590 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
8056, 25expp1d 13793 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8179, 80eqtrd 2778 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴↑(𝑘 + 1))) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8274faccld 13926 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℕ)
8382nnred 11918 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℝ)
8482nnnn0d 12223 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℕ0)
8584nn0ge0d 12226 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (!‘(𝑘 + 1)))
8683, 85absidd 15062 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(!‘(𝑘 + 1))) = (!‘(𝑘 + 1)))
87 facp1 13920 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8825, 87syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8986, 88eqtrd 2778 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(!‘(𝑘 + 1))) = ((!‘𝑘) · (𝑘 + 1)))
9081, 89oveq12d 7273 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
91 expcl 13728 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9274, 91syldan 590 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9382nncnd 11919 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℂ)
9482nnne0d 11953 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ≠ 0)
9592, 93, 94absdivd 15095 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))))
9630recnd 10934 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
9731nncnd 11919 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℂ)
9831nnne0d 11953 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ≠ 0)
9927nnne0d 11953 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ≠ 0)
10096, 97, 56, 60, 98, 99divmuldivd 11722 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
10190, 95, 1003eqtr4d 2788 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
10277, 101eqtrd 2778 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
103 halfcn 12118 . . . . 5 (1 / 2) ∈ ℂ
10425, 22syldan 590 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹𝑘) ∈ ℂ)
105104abscld 15076 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) ∈ ℝ)
106105recnd 10934 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) ∈ ℂ)
107 mulcom 10888 . . . . 5 (((1 / 2) ∈ ℂ ∧ (abs‘(𝐹𝑘)) ∈ ℂ) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
108103, 106, 107sylancr 586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
10925, 19syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
110109fveq2d 6760 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
111 eftabs 15713 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
11225, 111syldan 590 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
113110, 112eqtrd 2778 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
114113oveq1d 7270 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘(𝐹𝑘)) · (1 / 2)) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
115108, 114eqtrd 2778 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
11672, 102, 1153brtr4d 5102 . 2 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((1 / 2) · (abs‘(𝐹𝑘))))
1171, 2, 4, 6, 17, 22, 116cvgrat 15523 1 (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cmpt 5153  dom cdm 5580  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cuz 12511  +crp 12659  cfl 13438  seqcseq 13649  cexp 13710  !cfa 13915  abscabs 14873  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-fac 13916  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326
This theorem is referenced by:  eff  15719  efcvg  15722  reefcl  15724  efaddlem  15730  eftlcvg  15743  effsumlt  15748  eflegeo  15758  eirrlem  15841  expfac  43088
  Copyright terms: Public domain W3C validator