MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcllem Structured version   Visualization version   GIF version

Theorem efcllem 15981
Description: Lemma for efcl 15986. The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat 15787 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Proof shortened by AV, 9-Jul-2022.)
Hypothesis
Ref Expression
eftval.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
efcllem (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem efcllem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12771 . 2 0 = (ℤ‘0)
2 eqid 2731 . 2 (ℤ‘(⌊‘(2 · (abs‘𝐴)))) = (ℤ‘(⌊‘(2 · (abs‘𝐴))))
3 halfre 12331 . . 3 (1 / 2) ∈ ℝ
43a1i 11 . 2 (𝐴 ∈ ℂ → (1 / 2) ∈ ℝ)
5 halflt1 12335 . . 3 (1 / 2) < 1
65a1i 11 . 2 (𝐴 ∈ ℂ → (1 / 2) < 1)
7 2re 12196 . . . 4 2 ∈ ℝ
8 abscl 15182 . . . 4 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
9 remulcl 11088 . . . 4 ((2 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (2 · (abs‘𝐴)) ∈ ℝ)
107, 8, 9sylancr 587 . . 3 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) ∈ ℝ)
117a1i 11 . . . 4 (𝐴 ∈ ℂ → 2 ∈ ℝ)
12 0le2 12224 . . . . 5 0 ≤ 2
1312a1i 11 . . . 4 (𝐴 ∈ ℂ → 0 ≤ 2)
14 absge0 15191 . . . 4 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
1511, 8, 13, 14mulge0d 11691 . . 3 (𝐴 ∈ ℂ → 0 ≤ (2 · (abs‘𝐴)))
16 flge0nn0 13721 . . 3 (((2 · (abs‘𝐴)) ∈ ℝ ∧ 0 ≤ (2 · (abs‘𝐴))) → (⌊‘(2 · (abs‘𝐴))) ∈ ℕ0)
1710, 15, 16syl2anc 584 . 2 (𝐴 ∈ ℂ → (⌊‘(2 · (abs‘𝐴))) ∈ ℕ0)
18 eftval.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1918eftval 15980 . . . 4 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
2019adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
21 eftcl 15977 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
2220, 21eqeltrd 2831 . 2 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
238adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘𝐴) ∈ ℝ)
24 eluznn0 12812 . . . . . . 7 (((⌊‘(2 · (abs‘𝐴))) ∈ ℕ0𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 𝑘 ∈ ℕ0)
2517, 24sylan 580 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 𝑘 ∈ ℕ0)
26 nn0p1nn 12417 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2725, 26syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℕ)
2823, 27nndivred 12176 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ)
293a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (1 / 2) ∈ ℝ)
3023, 25reexpcld 14067 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
3125faccld 14188 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℕ)
3230, 31nndivred 12176 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
33 expcl 13983 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3425, 33syldan 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐴𝑘) ∈ ℂ)
3534absge0d 15351 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (abs‘(𝐴𝑘)))
36 absexp 15208 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3725, 36syldan 591 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3835, 37breqtrd 5117 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ ((abs‘𝐴)↑𝑘))
3931nnred 12137 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℝ)
4031nngt0d 12171 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 < (!‘𝑘))
41 divge0 11988 . . . . 5 (((((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑘)) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4230, 38, 39, 40, 41syl22anc 838 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4310adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) ∈ ℝ)
44 peano2nn0 12418 . . . . . . . . . . 11 ((⌊‘(2 · (abs‘𝐴))) ∈ ℕ0 → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℕ0)
4517, 44syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℕ0)
4645nn0red 12440 . . . . . . . . 9 (𝐴 ∈ ℂ → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℝ)
4746adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℝ)
4827nnred 12137 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℝ)
49 flltp1 13701 . . . . . . . . 9 ((2 · (abs‘𝐴)) ∈ ℝ → (2 · (abs‘𝐴)) < ((⌊‘(2 · (abs‘𝐴))) + 1))
5043, 49syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) < ((⌊‘(2 · (abs‘𝐴))) + 1))
51 eluzp1p1 12757 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴)))) → (𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)))
5251adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)))
53 eluzle 12742 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)) → ((⌊‘(2 · (abs‘𝐴))) + 1) ≤ (𝑘 + 1))
5452, 53syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((⌊‘(2 · (abs‘𝐴))) + 1) ≤ (𝑘 + 1))
5543, 47, 48, 50, 54ltletrd 11270 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) < (𝑘 + 1))
5623recnd 11137 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘𝐴) ∈ ℂ)
57 2cn 12197 . . . . . . . 8 2 ∈ ℂ
58 mulcom 11089 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
5956, 57, 58sylancl 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6027nncnd 12138 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℂ)
6160mullidd 11127 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (1 · (𝑘 + 1)) = (𝑘 + 1))
6255, 59, 613brtr4d 5123 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) · 2) < (1 · (𝑘 + 1)))
63 2rp 12892 . . . . . . . 8 2 ∈ ℝ+
6463a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 2 ∈ ℝ+)
65 1red 11110 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 1 ∈ ℝ)
6627nnrpd 12929 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℝ+)
6723, 64, 65, 66lt2mul2divd 13000 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴) · 2) < (1 · (𝑘 + 1)) ↔ ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2)))
6862, 67mpbid 232 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2))
69 ltle 11198 . . . . . 6 ((((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7028, 3, 69sylancl 586 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7168, 70mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2))
7228, 29, 32, 42, 71lemul2ad 12059 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) ≤ ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
73 peano2nn0 12418 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
7425, 73syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℕ0)
7518eftval 15980 . . . . . 6 ((𝑘 + 1) ∈ ℕ0 → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7674, 75syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7776fveq2d 6826 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))))
78 absexp 15208 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
7974, 78syldan 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
8056, 25expp1d 14051 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8179, 80eqtrd 2766 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴↑(𝑘 + 1))) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8274faccld 14188 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℕ)
8382nnred 12137 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℝ)
8482nnnn0d 12439 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℕ0)
8584nn0ge0d 12442 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (!‘(𝑘 + 1)))
8683, 85absidd 15327 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(!‘(𝑘 + 1))) = (!‘(𝑘 + 1)))
87 facp1 14182 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8825, 87syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8986, 88eqtrd 2766 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(!‘(𝑘 + 1))) = ((!‘𝑘) · (𝑘 + 1)))
9081, 89oveq12d 7364 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
91 expcl 13983 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9274, 91syldan 591 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9382nncnd 12138 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℂ)
9482nnne0d 12172 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ≠ 0)
9592, 93, 94absdivd 15362 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))))
9630recnd 11137 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
9731nncnd 12138 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℂ)
9831nnne0d 12172 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ≠ 0)
9927nnne0d 12172 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ≠ 0)
10096, 97, 56, 60, 98, 99divmuldivd 11935 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
10190, 95, 1003eqtr4d 2776 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
10277, 101eqtrd 2766 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
103 halfcn 12332 . . . . 5 (1 / 2) ∈ ℂ
10425, 22syldan 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹𝑘) ∈ ℂ)
105104abscld 15343 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) ∈ ℝ)
106105recnd 11137 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) ∈ ℂ)
107 mulcom 11089 . . . . 5 (((1 / 2) ∈ ℂ ∧ (abs‘(𝐹𝑘)) ∈ ℂ) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
108103, 106, 107sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
10925, 19syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
110109fveq2d 6826 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
111 eftabs 15979 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
11225, 111syldan 591 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
113110, 112eqtrd 2766 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
114113oveq1d 7361 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘(𝐹𝑘)) · (1 / 2)) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
115108, 114eqtrd 2766 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
11672, 102, 1153brtr4d 5123 . 2 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((1 / 2) · (abs‘(𝐹𝑘))))
1171, 2, 4, 6, 17, 22, 116cvgrat 15787 1 (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5091  cmpt 5172  dom cdm 5616  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143  cle 11144   / cdiv 11771  cn 12122  2c2 12177  0cn0 12378  cuz 12729  +crp 12887  cfl 13691  seqcseq 13905  cexp 13965  !cfa 14177  abscabs 15138  cli 15388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-ico 13248  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-fac 14178  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591
This theorem is referenced by:  eff  15985  efcvg  15989  reefcl  15991  efaddlem  15997  eftlcvg  16012  effsumlt  16017  eflegeo  16027  eirrlem  16110  expfac  45694
  Copyright terms: Public domain W3C validator