MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcllem Structured version   Visualization version   GIF version

Theorem efcllem 15986
Description: Lemma for efcl 15991. The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat 15792 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Proof shortened by AV, 9-Jul-2022.)
Hypothesis
Ref Expression
eftval.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
efcllem (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem efcllem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12776 . 2 0 = (ℤ‘0)
2 eqid 2733 . 2 (ℤ‘(⌊‘(2 · (abs‘𝐴)))) = (ℤ‘(⌊‘(2 · (abs‘𝐴))))
3 halfre 12341 . . 3 (1 / 2) ∈ ℝ
43a1i 11 . 2 (𝐴 ∈ ℂ → (1 / 2) ∈ ℝ)
5 halflt1 12345 . . 3 (1 / 2) < 1
65a1i 11 . 2 (𝐴 ∈ ℂ → (1 / 2) < 1)
7 2re 12206 . . . 4 2 ∈ ℝ
8 abscl 15187 . . . 4 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
9 remulcl 11098 . . . 4 ((2 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (2 · (abs‘𝐴)) ∈ ℝ)
107, 8, 9sylancr 587 . . 3 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) ∈ ℝ)
117a1i 11 . . . 4 (𝐴 ∈ ℂ → 2 ∈ ℝ)
12 0le2 12234 . . . . 5 0 ≤ 2
1312a1i 11 . . . 4 (𝐴 ∈ ℂ → 0 ≤ 2)
14 absge0 15196 . . . 4 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
1511, 8, 13, 14mulge0d 11701 . . 3 (𝐴 ∈ ℂ → 0 ≤ (2 · (abs‘𝐴)))
16 flge0nn0 13726 . . 3 (((2 · (abs‘𝐴)) ∈ ℝ ∧ 0 ≤ (2 · (abs‘𝐴))) → (⌊‘(2 · (abs‘𝐴))) ∈ ℕ0)
1710, 15, 16syl2anc 584 . 2 (𝐴 ∈ ℂ → (⌊‘(2 · (abs‘𝐴))) ∈ ℕ0)
18 eftval.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1918eftval 15985 . . . 4 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
2019adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
21 eftcl 15982 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
2220, 21eqeltrd 2833 . 2 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
238adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘𝐴) ∈ ℝ)
24 eluznn0 12817 . . . . . . 7 (((⌊‘(2 · (abs‘𝐴))) ∈ ℕ0𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 𝑘 ∈ ℕ0)
2517, 24sylan 580 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 𝑘 ∈ ℕ0)
26 nn0p1nn 12427 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2725, 26syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℕ)
2823, 27nndivred 12186 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ)
293a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (1 / 2) ∈ ℝ)
3023, 25reexpcld 14072 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
3125faccld 14193 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℕ)
3230, 31nndivred 12186 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
33 expcl 13988 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3425, 33syldan 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐴𝑘) ∈ ℂ)
3534absge0d 15356 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (abs‘(𝐴𝑘)))
36 absexp 15213 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3725, 36syldan 591 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3835, 37breqtrd 5119 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ ((abs‘𝐴)↑𝑘))
3931nnred 12147 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℝ)
4031nngt0d 12181 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 < (!‘𝑘))
41 divge0 11998 . . . . 5 (((((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑘)) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4230, 38, 39, 40, 41syl22anc 838 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4310adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) ∈ ℝ)
44 peano2nn0 12428 . . . . . . . . . . 11 ((⌊‘(2 · (abs‘𝐴))) ∈ ℕ0 → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℕ0)
4517, 44syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℕ0)
4645nn0red 12450 . . . . . . . . 9 (𝐴 ∈ ℂ → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℝ)
4746adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℝ)
4827nnred 12147 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℝ)
49 flltp1 13706 . . . . . . . . 9 ((2 · (abs‘𝐴)) ∈ ℝ → (2 · (abs‘𝐴)) < ((⌊‘(2 · (abs‘𝐴))) + 1))
5043, 49syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) < ((⌊‘(2 · (abs‘𝐴))) + 1))
51 eluzp1p1 12766 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴)))) → (𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)))
5251adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)))
53 eluzle 12751 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)) → ((⌊‘(2 · (abs‘𝐴))) + 1) ≤ (𝑘 + 1))
5452, 53syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((⌊‘(2 · (abs‘𝐴))) + 1) ≤ (𝑘 + 1))
5543, 47, 48, 50, 54ltletrd 11280 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) < (𝑘 + 1))
5623recnd 11147 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘𝐴) ∈ ℂ)
57 2cn 12207 . . . . . . . 8 2 ∈ ℂ
58 mulcom 11099 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
5956, 57, 58sylancl 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6027nncnd 12148 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℂ)
6160mullidd 11137 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (1 · (𝑘 + 1)) = (𝑘 + 1))
6255, 59, 613brtr4d 5125 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) · 2) < (1 · (𝑘 + 1)))
63 2rp 12897 . . . . . . . 8 2 ∈ ℝ+
6463a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 2 ∈ ℝ+)
65 1red 11120 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 1 ∈ ℝ)
6627nnrpd 12934 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℝ+)
6723, 64, 65, 66lt2mul2divd 13005 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴) · 2) < (1 · (𝑘 + 1)) ↔ ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2)))
6862, 67mpbid 232 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2))
69 ltle 11208 . . . . . 6 ((((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7028, 3, 69sylancl 586 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7168, 70mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2))
7228, 29, 32, 42, 71lemul2ad 12069 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) ≤ ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
73 peano2nn0 12428 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
7425, 73syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℕ0)
7518eftval 15985 . . . . . 6 ((𝑘 + 1) ∈ ℕ0 → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7674, 75syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7776fveq2d 6832 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))))
78 absexp 15213 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
7974, 78syldan 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
8056, 25expp1d 14056 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8179, 80eqtrd 2768 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴↑(𝑘 + 1))) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8274faccld 14193 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℕ)
8382nnred 12147 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℝ)
8482nnnn0d 12449 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℕ0)
8584nn0ge0d 12452 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (!‘(𝑘 + 1)))
8683, 85absidd 15332 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(!‘(𝑘 + 1))) = (!‘(𝑘 + 1)))
87 facp1 14187 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8825, 87syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8986, 88eqtrd 2768 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(!‘(𝑘 + 1))) = ((!‘𝑘) · (𝑘 + 1)))
9081, 89oveq12d 7370 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
91 expcl 13988 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9274, 91syldan 591 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9382nncnd 12148 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℂ)
9482nnne0d 12182 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ≠ 0)
9592, 93, 94absdivd 15367 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))))
9630recnd 11147 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
9731nncnd 12148 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℂ)
9831nnne0d 12182 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ≠ 0)
9927nnne0d 12182 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ≠ 0)
10096, 97, 56, 60, 98, 99divmuldivd 11945 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
10190, 95, 1003eqtr4d 2778 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
10277, 101eqtrd 2768 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
103 halfcn 12342 . . . . 5 (1 / 2) ∈ ℂ
10425, 22syldan 591 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹𝑘) ∈ ℂ)
105104abscld 15348 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) ∈ ℝ)
106105recnd 11147 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) ∈ ℂ)
107 mulcom 11099 . . . . 5 (((1 / 2) ∈ ℂ ∧ (abs‘(𝐹𝑘)) ∈ ℂ) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
108103, 106, 107sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
10925, 19syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
110109fveq2d 6832 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
111 eftabs 15984 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
11225, 111syldan 591 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
113110, 112eqtrd 2768 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
114113oveq1d 7367 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘(𝐹𝑘)) · (1 / 2)) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
115108, 114eqtrd 2768 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
11672, 102, 1153brtr4d 5125 . 2 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((1 / 2) · (abs‘(𝐹𝑘))))
1171, 2, 4, 6, 17, 22, 116cvgrat 15792 1 (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113   class class class wbr 5093  cmpt 5174  dom cdm 5619  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   < clt 11153  cle 11154   / cdiv 11781  cn 12132  2c2 12187  0cn0 12388  cuz 12738  +crp 12892  cfl 13696  seqcseq 13910  cexp 13970  !cfa 14182  abscabs 15143  cli 15393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-ico 13253  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-fac 14183  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596
This theorem is referenced by:  eff  15990  efcvg  15994  reefcl  15996  efaddlem  16002  eftlcvg  16017  effsumlt  16022  eflegeo  16032  eirrlem  16115  expfac  45779
  Copyright terms: Public domain W3C validator