MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcllem Structured version   Visualization version   GIF version

Theorem efcllem 15535
Description: Lemma for efcl 15540. The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat 15343 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Proof shortened by AV, 9-Jul-2022.)
Hypothesis
Ref Expression
eftval.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
efcllem (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem efcllem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12374 . 2 0 = (ℤ‘0)
2 eqid 2739 . 2 (ℤ‘(⌊‘(2 · (abs‘𝐴)))) = (ℤ‘(⌊‘(2 · (abs‘𝐴))))
3 halfre 11942 . . 3 (1 / 2) ∈ ℝ
43a1i 11 . 2 (𝐴 ∈ ℂ → (1 / 2) ∈ ℝ)
5 halflt1 11946 . . 3 (1 / 2) < 1
65a1i 11 . 2 (𝐴 ∈ ℂ → (1 / 2) < 1)
7 2re 11802 . . . 4 2 ∈ ℝ
8 abscl 14740 . . . 4 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
9 remulcl 10712 . . . 4 ((2 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → (2 · (abs‘𝐴)) ∈ ℝ)
107, 8, 9sylancr 590 . . 3 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) ∈ ℝ)
117a1i 11 . . . 4 (𝐴 ∈ ℂ → 2 ∈ ℝ)
12 0le2 11830 . . . . 5 0 ≤ 2
1312a1i 11 . . . 4 (𝐴 ∈ ℂ → 0 ≤ 2)
14 absge0 14749 . . . 4 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
1511, 8, 13, 14mulge0d 11307 . . 3 (𝐴 ∈ ℂ → 0 ≤ (2 · (abs‘𝐴)))
16 flge0nn0 13293 . . 3 (((2 · (abs‘𝐴)) ∈ ℝ ∧ 0 ≤ (2 · (abs‘𝐴))) → (⌊‘(2 · (abs‘𝐴))) ∈ ℕ0)
1710, 15, 16syl2anc 587 . 2 (𝐴 ∈ ℂ → (⌊‘(2 · (abs‘𝐴))) ∈ ℕ0)
18 eftval.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1918eftval 15534 . . . 4 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
2019adantl 485 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
21 eftcl 15531 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
2220, 21eqeltrd 2834 . 2 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
238adantr 484 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘𝐴) ∈ ℝ)
24 eluznn0 12411 . . . . . . 7 (((⌊‘(2 · (abs‘𝐴))) ∈ ℕ0𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 𝑘 ∈ ℕ0)
2517, 24sylan 583 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 𝑘 ∈ ℕ0)
26 nn0p1nn 12027 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
2725, 26syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℕ)
2823, 27nndivred 11782 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ)
293a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (1 / 2) ∈ ℝ)
3023, 25reexpcld 13631 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
3125faccld 13748 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℕ)
3230, 31nndivred 11782 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
33 expcl 13551 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3425, 33syldan 594 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐴𝑘) ∈ ℂ)
3534absge0d 14906 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (abs‘(𝐴𝑘)))
36 absexp 14766 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3725, 36syldan 594 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3835, 37breqtrd 5066 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ ((abs‘𝐴)↑𝑘))
3931nnred 11743 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℝ)
4031nngt0d 11777 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 < (!‘𝑘))
41 divge0 11599 . . . . 5 (((((abs‘𝐴)↑𝑘) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑘)) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4230, 38, 39, 40, 41syl22anc 838 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4310adantr 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) ∈ ℝ)
44 peano2nn0 12028 . . . . . . . . . . 11 ((⌊‘(2 · (abs‘𝐴))) ∈ ℕ0 → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℕ0)
4517, 44syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℕ0)
4645nn0red 12049 . . . . . . . . 9 (𝐴 ∈ ℂ → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℝ)
4746adantr 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((⌊‘(2 · (abs‘𝐴))) + 1) ∈ ℝ)
4827nnred 11743 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℝ)
49 flltp1 13273 . . . . . . . . 9 ((2 · (abs‘𝐴)) ∈ ℝ → (2 · (abs‘𝐴)) < ((⌊‘(2 · (abs‘𝐴))) + 1))
5043, 49syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) < ((⌊‘(2 · (abs‘𝐴))) + 1))
51 eluzp1p1 12364 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴)))) → (𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)))
5251adantl 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)))
53 eluzle 12349 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ‘((⌊‘(2 · (abs‘𝐴))) + 1)) → ((⌊‘(2 · (abs‘𝐴))) + 1) ≤ (𝑘 + 1))
5452, 53syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((⌊‘(2 · (abs‘𝐴))) + 1) ≤ (𝑘 + 1))
5543, 47, 48, 50, 54ltletrd 10890 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (2 · (abs‘𝐴)) < (𝑘 + 1))
5623recnd 10759 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘𝐴) ∈ ℂ)
57 2cn 11803 . . . . . . . 8 2 ∈ ℂ
58 mulcom 10713 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
5956, 57, 58sylancl 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) · 2) = (2 · (abs‘𝐴)))
6027nncnd 11744 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℂ)
6160mulid2d 10749 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (1 · (𝑘 + 1)) = (𝑘 + 1))
6255, 59, 613brtr4d 5072 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) · 2) < (1 · (𝑘 + 1)))
63 2rp 12489 . . . . . . . 8 2 ∈ ℝ+
6463a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 2 ∈ ℝ+)
65 1red 10732 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 1 ∈ ℝ)
6627nnrpd 12524 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℝ+)
6723, 64, 65, 66lt2mul2divd 12595 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴) · 2) < (1 · (𝑘 + 1)) ↔ ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2)))
6862, 67mpbid 235 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) < (1 / 2))
69 ltle 10819 . . . . . 6 ((((abs‘𝐴) / (𝑘 + 1)) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7028, 3, 69sylancl 589 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (((abs‘𝐴) / (𝑘 + 1)) < (1 / 2) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2)))
7168, 70mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴) / (𝑘 + 1)) ≤ (1 / 2))
7228, 29, 32, 42, 71lemul2ad 11670 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) ≤ ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
73 peano2nn0 12028 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
7425, 73syl 17 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ∈ ℕ0)
7518eftval 15534 . . . . . 6 ((𝑘 + 1) ∈ ℕ0 → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7674, 75syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹‘(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1))))
7776fveq2d 6690 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))))
78 absexp 14766 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
7974, 78syldan 594 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴↑(𝑘 + 1))) = ((abs‘𝐴)↑(𝑘 + 1)))
8056, 25expp1d 13615 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑(𝑘 + 1)) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8179, 80eqtrd 2774 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐴↑(𝑘 + 1))) = (((abs‘𝐴)↑𝑘) · (abs‘𝐴)))
8274faccld 13748 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℕ)
8382nnred 11743 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℝ)
8482nnnn0d 12048 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℕ0)
8584nn0ge0d 12051 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → 0 ≤ (!‘(𝑘 + 1)))
8683, 85absidd 14884 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(!‘(𝑘 + 1))) = (!‘(𝑘 + 1)))
87 facp1 13742 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8825, 87syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
8986, 88eqtrd 2774 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(!‘(𝑘 + 1))) = ((!‘𝑘) · (𝑘 + 1)))
9081, 89oveq12d 7200 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
91 expcl 13551 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9274, 91syldan 594 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐴↑(𝑘 + 1)) ∈ ℂ)
9382nncnd 11744 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ∈ ℂ)
9482nnne0d 11778 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘(𝑘 + 1)) ≠ 0)
9592, 93, 94absdivd 14917 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((abs‘(𝐴↑(𝑘 + 1))) / (abs‘(!‘(𝑘 + 1)))))
9630recnd 10759 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
9731nncnd 11744 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ∈ ℂ)
9831nnne0d 11778 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (!‘𝑘) ≠ 0)
9927nnne0d 11778 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝑘 + 1) ≠ 0)
10096, 97, 56, 60, 98, 99divmuldivd 11547 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) · (abs‘𝐴)) / ((!‘𝑘) · (𝑘 + 1))))
10190, 95, 1003eqtr4d 2784 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴↑(𝑘 + 1)) / (!‘(𝑘 + 1)))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
10277, 101eqtrd 2774 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · ((abs‘𝐴) / (𝑘 + 1))))
103 halfcn 11943 . . . . 5 (1 / 2) ∈ ℂ
10425, 22syldan 594 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹𝑘) ∈ ℂ)
105104abscld 14898 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) ∈ ℝ)
106105recnd 10759 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) ∈ ℂ)
107 mulcom 10713 . . . . 5 (((1 / 2) ∈ ℂ ∧ (abs‘(𝐹𝑘)) ∈ ℂ) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
108103, 106, 107sylancr 590 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) · (1 / 2)))
10925, 19syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
110109fveq2d 6690 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
111 eftabs 15533 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
11225, 111syldan 594 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
113110, 112eqtrd 2774 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹𝑘)) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
114113oveq1d 7197 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((abs‘(𝐹𝑘)) · (1 / 2)) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
115108, 114eqtrd 2774 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → ((1 / 2) · (abs‘(𝐹𝑘))) = ((((abs‘𝐴)↑𝑘) / (!‘𝑘)) · (1 / 2)))
11672, 102, 1153brtr4d 5072 . 2 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘(⌊‘(2 · (abs‘𝐴))))) → (abs‘(𝐹‘(𝑘 + 1))) ≤ ((1 / 2) · (abs‘(𝐹𝑘))))
1171, 2, 4, 6, 17, 22, 116cvgrat 15343 1 (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114   class class class wbr 5040  cmpt 5120  dom cdm 5535  cfv 6349  (class class class)co 7182  cc 10625  cr 10626  0cc0 10627  1c1 10628   + caddc 10630   · cmul 10632   < clt 10765  cle 10766   / cdiv 11387  cn 11728  2c2 11783  0cn0 11988  cuz 12336  +crp 12484  cfl 13263  seqcseq 13472  cexp 13533  !cfa 13737  abscabs 14695  cli 14943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-inf2 9189  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-er 8332  df-pm 8452  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-sup 8991  df-inf 8992  df-oi 9059  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-div 11388  df-nn 11729  df-2 11791  df-3 11792  df-n0 11989  df-z 12075  df-uz 12337  df-rp 12485  df-ico 12839  df-fz 12994  df-fzo 13137  df-fl 13265  df-seq 13473  df-exp 13534  df-fac 13738  df-hash 13795  df-shft 14528  df-cj 14560  df-re 14561  df-im 14562  df-sqrt 14696  df-abs 14697  df-limsup 14930  df-clim 14947  df-rlim 14948  df-sum 15148
This theorem is referenced by:  eff  15539  efcvg  15542  reefcl  15544  efaddlem  15550  eftlcvg  15563  effsumlt  15568  eflegeo  15578  eirrlem  15661  expfac  42780
  Copyright terms: Public domain W3C validator