![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgt1p | Structured version Visualization version GIF version |
Description: The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
efgt1p | ⊢ (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 12987 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
2 | nn0uz 12865 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
3 | 0nn0 12488 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℕ0) |
5 | 1e0p1 12720 | . . . 4 ⊢ 1 = (0 + 1) | |
6 | 0z 12570 | . . . . 5 ⊢ 0 ∈ ℤ | |
7 | eqid 2726 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
8 | 7 | eftval 16024 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))) |
9 | 3, 8 | ax-mp 5 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)) |
10 | eft0val 16060 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | |
11 | 9, 10 | eqtrid 2778 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = 1) |
12 | 6, 11 | seq1i 13983 | . . . 4 ⊢ (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) = 1) |
13 | 1nn0 12489 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
14 | 7 | eftval 16024 | . . . . . 6 ⊢ (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))) |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)) |
16 | fac1 14240 | . . . . . . 7 ⊢ (!‘1) = 1 | |
17 | 16 | oveq2i 7415 | . . . . . 6 ⊢ ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1) |
18 | exp1 14036 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
19 | 18 | oveq1d 7419 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1)) |
20 | div1 11904 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | |
21 | 19, 20 | eqtrd 2766 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴) |
22 | 17, 21 | eqtrid 2778 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
23 | 15, 22 | eqtrid 2778 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = 𝐴) |
24 | 2, 4, 5, 12, 23 | seqp1d 13986 | . . 3 ⊢ (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
25 | 1, 24 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
26 | id 22 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+) | |
27 | 13 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 1 ∈ ℕ0) |
28 | 7, 26, 27 | effsumlt 16059 | . 2 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) < (exp‘𝐴)) |
29 | 25, 28 | eqbrtrrd 5165 | 1 ⊢ (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 class class class wbr 5141 ↦ cmpt 5224 ‘cfv 6536 (class class class)co 7404 ℂcc 11107 0cc0 11109 1c1 11110 + caddc 11112 < clt 11249 / cdiv 11872 ℕ0cn0 12473 ℝ+crp 12977 seqcseq 13969 ↑cexp 14030 !cfa 14236 expce 16009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-ico 13333 df-fz 13488 df-fzo 13631 df-fl 13760 df-seq 13970 df-exp 14031 df-fac 14237 df-hash 14294 df-shft 15018 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-limsup 15419 df-clim 15436 df-rlim 15437 df-sum 15637 df-ef 16015 |
This theorem is referenced by: efgt1 16064 reeff1olem 26334 logdivlti 26505 logdifbnd 26877 emcllem4 26882 harmonicbnd4 26894 |
Copyright terms: Public domain | W3C validator |