MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgt1p Structured version   Visualization version   GIF version

Theorem efgt1p 16151
Description: The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
efgt1p (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴))

Proof of Theorem efgt1p
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 rpcn 13045 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
2 nn0uz 12920 . . . 4 0 = (ℤ‘0)
3 0nn0 12541 . . . . 5 0 ∈ ℕ0
43a1i 11 . . . 4 (𝐴 ∈ ℂ → 0 ∈ ℕ0)
5 1e0p1 12775 . . . 4 1 = (0 + 1)
6 0z 12624 . . . . 5 0 ∈ ℤ
7 eqid 2737 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
87eftval 16112 . . . . . . 7 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
93, 8ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))
10 eft0val 16148 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
119, 10eqtrid 2789 . . . . 5 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
126, 11seq1i 14056 . . . 4 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
13 1nn0 12542 . . . . . 6 1 ∈ ℕ0
147eftval 16112 . . . . . 6 (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
1513, 14ax-mp 5 . . . . 5 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))
16 fac1 14316 . . . . . . 7 (!‘1) = 1
1716oveq2i 7442 . . . . . 6 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
18 exp1 14108 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1918oveq1d 7446 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
20 div1 11957 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
2119, 20eqtrd 2777 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
2217, 21eqtrid 2789 . . . . 5 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
2315, 22eqtrid 2789 . . . 4 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
242, 4, 5, 12, 23seqp1d 14059 . . 3 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
251, 24syl 17 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
26 id 22 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
2713a1i 11 . . 3 (𝐴 ∈ ℝ+ → 1 ∈ ℕ0)
287, 26, 27effsumlt 16147 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) < (exp‘𝐴))
2925, 28eqbrtrrd 5167 1 (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295   / cdiv 11920  0cn0 12526  +crp 13034  seqcseq 14042  cexp 14102  !cfa 14312  expce 16097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-fac 14313  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103
This theorem is referenced by:  efgt1  16152  reeff1olem  26490  logdivlti  26662  logdifbnd  27037  emcllem4  27042  harmonicbnd4  27054
  Copyright terms: Public domain W3C validator