MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgt1p Structured version   Visualization version   GIF version

Theorem efgt1p 16097
Description: The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
efgt1p (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴))

Proof of Theorem efgt1p
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 rpcn 13022 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
2 nn0uz 12900 . . . 4 0 = (ℤ‘0)
3 0nn0 12523 . . . . 5 0 ∈ ℕ0
43a1i 11 . . . 4 (𝐴 ∈ ℂ → 0 ∈ ℕ0)
5 1e0p1 12755 . . . 4 1 = (0 + 1)
6 0z 12605 . . . . 5 0 ∈ ℤ
7 eqid 2727 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
87eftval 16058 . . . . . . 7 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
93, 8ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))
10 eft0val 16094 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
119, 10eqtrid 2779 . . . . 5 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
126, 11seq1i 14018 . . . 4 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
13 1nn0 12524 . . . . . 6 1 ∈ ℕ0
147eftval 16058 . . . . . 6 (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
1513, 14ax-mp 5 . . . . 5 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))
16 fac1 14274 . . . . . . 7 (!‘1) = 1
1716oveq2i 7435 . . . . . 6 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
18 exp1 14070 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1918oveq1d 7439 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
20 div1 11939 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
2119, 20eqtrd 2767 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
2217, 21eqtrid 2779 . . . . 5 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
2315, 22eqtrid 2779 . . . 4 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
242, 4, 5, 12, 23seqp1d 14021 . . 3 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
251, 24syl 17 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
26 id 22 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
2713a1i 11 . . 3 (𝐴 ∈ ℝ+ → 1 ∈ ℕ0)
287, 26, 27effsumlt 16093 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) < (exp‘𝐴))
2925, 28eqbrtrrd 5174 1 (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098   class class class wbr 5150  cmpt 5233  cfv 6551  (class class class)co 7424  cc 11142  0cc0 11144  1c1 11145   + caddc 11147   < clt 11284   / cdiv 11907  0cn0 12508  +crp 13012  seqcseq 14004  cexp 14064  !cfa 14270  expce 16043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-oi 9539  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-ico 13368  df-fz 13523  df-fzo 13666  df-fl 13795  df-seq 14005  df-exp 14065  df-fac 14271  df-hash 14328  df-shft 15052  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-limsup 15453  df-clim 15470  df-rlim 15471  df-sum 15671  df-ef 16049
This theorem is referenced by:  efgt1  16098  reeff1olem  26401  logdivlti  26572  logdifbnd  26944  emcllem4  26949  harmonicbnd4  26961
  Copyright terms: Public domain W3C validator