Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgt1p | Structured version Visualization version GIF version |
Description: The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
efgt1p | ⊢ (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 12842 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
2 | nn0uz 12722 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
3 | 0nn0 12350 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℕ0) |
5 | 1e0p1 12581 | . . . 4 ⊢ 1 = (0 + 1) | |
6 | 0z 12432 | . . . . 5 ⊢ 0 ∈ ℤ | |
7 | eqid 2736 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
8 | 7 | eftval 15886 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))) |
9 | 3, 8 | ax-mp 5 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)) |
10 | eft0val 15921 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | |
11 | 9, 10 | eqtrid 2788 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = 1) |
12 | 6, 11 | seq1i 13837 | . . . 4 ⊢ (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) = 1) |
13 | 1nn0 12351 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
14 | 7 | eftval 15886 | . . . . . 6 ⊢ (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))) |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)) |
16 | fac1 14093 | . . . . . . 7 ⊢ (!‘1) = 1 | |
17 | 16 | oveq2i 7349 | . . . . . 6 ⊢ ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1) |
18 | exp1 13890 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
19 | 18 | oveq1d 7353 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1)) |
20 | div1 11766 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | |
21 | 19, 20 | eqtrd 2776 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴) |
22 | 17, 21 | eqtrid 2788 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
23 | 15, 22 | eqtrid 2788 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = 𝐴) |
24 | 2, 4, 5, 12, 23 | seqp1d 13840 | . . 3 ⊢ (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
25 | 1, 24 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
26 | id 22 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+) | |
27 | 13 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 1 ∈ ℕ0) |
28 | 7, 26, 27 | effsumlt 15920 | . 2 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) < (exp‘𝐴)) |
29 | 25, 28 | eqbrtrrd 5117 | 1 ⊢ (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 class class class wbr 5093 ↦ cmpt 5176 ‘cfv 6480 (class class class)co 7338 ℂcc 10971 0cc0 10973 1c1 10974 + caddc 10976 < clt 11111 / cdiv 11734 ℕ0cn0 12335 ℝ+crp 12832 seqcseq 13823 ↑cexp 13884 !cfa 14089 expce 15871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-inf2 9499 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-pre-sup 11051 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-pm 8690 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-sup 9300 df-inf 9301 df-oi 9368 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-div 11735 df-nn 12076 df-2 12138 df-3 12139 df-n0 12336 df-z 12422 df-uz 12685 df-rp 12833 df-ico 13187 df-fz 13342 df-fzo 13485 df-fl 13614 df-seq 13824 df-exp 13885 df-fac 14090 df-hash 14147 df-shft 14878 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-limsup 15280 df-clim 15297 df-rlim 15298 df-sum 15498 df-ef 15877 |
This theorem is referenced by: efgt1 15925 reeff1olem 25712 logdivlti 25882 logdifbnd 26250 emcllem4 26255 harmonicbnd4 26267 |
Copyright terms: Public domain | W3C validator |