![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgt1p | Structured version Visualization version GIF version |
Description: The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
efgt1p | ⊢ (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcn 13043 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
2 | nn0uz 12918 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
3 | 0nn0 12539 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℕ0) |
5 | 1e0p1 12773 | . . . 4 ⊢ 1 = (0 + 1) | |
6 | 0z 12622 | . . . . 5 ⊢ 0 ∈ ℤ | |
7 | eqid 2735 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
8 | 7 | eftval 16109 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))) |
9 | 3, 8 | ax-mp 5 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)) |
10 | eft0val 16145 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | |
11 | 9, 10 | eqtrid 2787 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = 1) |
12 | 6, 11 | seq1i 14053 | . . . 4 ⊢ (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) = 1) |
13 | 1nn0 12540 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
14 | 7 | eftval 16109 | . . . . . 6 ⊢ (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))) |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)) |
16 | fac1 14313 | . . . . . . 7 ⊢ (!‘1) = 1 | |
17 | 16 | oveq2i 7442 | . . . . . 6 ⊢ ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1) |
18 | exp1 14105 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
19 | 18 | oveq1d 7446 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1)) |
20 | div1 11955 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | |
21 | 19, 20 | eqtrd 2775 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴) |
22 | 17, 21 | eqtrid 2787 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
23 | 15, 22 | eqtrid 2787 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = 𝐴) |
24 | 2, 4, 5, 12, 23 | seqp1d 14056 | . . 3 ⊢ (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
25 | 1, 24 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
26 | id 22 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+) | |
27 | 13 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 1 ∈ ℕ0) |
28 | 7, 26, 27 | effsumlt 16144 | . 2 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) < (exp‘𝐴)) |
29 | 25, 28 | eqbrtrrd 5172 | 1 ⊢ (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 < clt 11293 / cdiv 11918 ℕ0cn0 12524 ℝ+crp 13032 seqcseq 14039 ↑cexp 14099 !cfa 14309 expce 16094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-ico 13390 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-fac 14310 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 |
This theorem is referenced by: efgt1 16149 reeff1olem 26505 logdivlti 26677 logdifbnd 27052 emcllem4 27057 harmonicbnd4 27069 |
Copyright terms: Public domain | W3C validator |