![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efcvgfsum | Structured version Visualization version GIF version |
Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
efcvgfsum.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) |
Ref | Expression |
---|---|
efcvgfsum | ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . . . . . . 8 ⊢ (𝑛 = 𝑗 → (0...𝑛) = (0...𝑗)) | |
2 | 1 | sumeq1d 15748 | . . . . . . 7 ⊢ (𝑛 = 𝑗 → Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
3 | efcvgfsum.1 | . . . . . . 7 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) | |
4 | sumex 15736 | . . . . . . 7 ⊢ Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘)) ∈ V | |
5 | 2, 3, 4 | fvmpt 7029 | . . . . . 6 ⊢ (𝑗 ∈ ℕ0 → (𝐹‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
7 | elfznn0 13677 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0) | |
8 | 7 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0) |
9 | eqid 2740 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
10 | 9 | eftval 16124 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
11 | 8, 10 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
12 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0) | |
13 | nn0uz 12945 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
14 | 12, 13 | eleqtrdi 2854 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ≥‘0)) |
15 | simpll 766 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ) | |
16 | eftcl 16121 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | |
17 | 15, 8, 16 | syl2anc 583 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
18 | 11, 14, 17 | fsumser 15778 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
19 | 6, 18 | eqtrd 2780 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
20 | 19 | ralrimiva 3152 | . . 3 ⊢ (𝐴 ∈ ℂ → ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
21 | sumex 15736 | . . . . 5 ⊢ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) ∈ V | |
22 | 21, 3 | fnmpti 6723 | . . . 4 ⊢ 𝐹 Fn ℕ0 |
23 | 0z 12650 | . . . . . 6 ⊢ 0 ∈ ℤ | |
24 | seqfn 14064 | . . . . . 6 ⊢ (0 ∈ ℤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn (ℤ≥‘0)) | |
25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn (ℤ≥‘0) |
26 | 13 | fneq2i 6677 | . . . . 5 ⊢ (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn ℕ0 ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn (ℤ≥‘0)) |
27 | 25, 26 | mpbir 231 | . . . 4 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn ℕ0 |
28 | eqfnfv 7064 | . . . 4 ⊢ ((𝐹 Fn ℕ0 ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn ℕ0) → (𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ↔ ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗))) | |
29 | 22, 27, 28 | mp2an 691 | . . 3 ⊢ (𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ↔ ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
30 | 20, 29 | sylibr 234 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))) |
31 | 9 | efcvg 16133 | . 2 ⊢ (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴)) |
32 | 30, 31 | eqbrtrd 5188 | 1 ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ↦ cmpt 5249 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 + caddc 11187 / cdiv 11947 ℕ0cn0 12553 ℤcz 12639 ℤ≥cuz 12903 ...cfz 13567 seqcseq 14052 ↑cexp 14112 !cfa 14322 ⇝ cli 15530 Σcsu 15734 expce 16109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-ico 13413 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-fac 14323 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |