MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcvgfsum Structured version   Visualization version   GIF version

Theorem efcvgfsum 15973
Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcvgfsum.1 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)))
Assertion
Ref Expression
efcvgfsum (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴))
Distinct variable group:   𝑘,𝑛,𝐴
Allowed substitution hints:   𝐹(𝑘,𝑛)

Proof of Theorem efcvgfsum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7366 . . . . . . . 8 (𝑛 = 𝑗 → (0...𝑛) = (0...𝑗))
21sumeq1d 15591 . . . . . . 7 (𝑛 = 𝑗 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
3 efcvgfsum.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)))
4 sumex 15578 . . . . . . 7 Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)) ∈ V
52, 3, 4fvmpt 6949 . . . . . 6 (𝑗 ∈ ℕ0 → (𝐹𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
65adantl 483 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
7 elfznn0 13540 . . . . . . . 8 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
87adantl 483 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0)
9 eqid 2733 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
109eftval 15964 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
118, 10syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
12 simpr 486 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
13 nn0uz 12810 . . . . . . 7 0 = (ℤ‘0)
1412, 13eleqtrdi 2844 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
15 simpll 766 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ)
16 eftcl 15961 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1715, 8, 16syl2anc 585 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1811, 14, 17fsumser 15620 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗))
196, 18eqtrd 2773 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗))
2019ralrimiva 3140 . . 3 (𝐴 ∈ ℂ → ∀𝑗 ∈ ℕ0 (𝐹𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗))
21 sumex 15578 . . . . 5 Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) ∈ V
2221, 3fnmpti 6645 . . . 4 𝐹 Fn ℕ0
23 0z 12515 . . . . . 6 0 ∈ ℤ
24 seqfn 13924 . . . . . 6 (0 ∈ ℤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn (ℤ‘0))
2523, 24ax-mp 5 . . . . 5 seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn (ℤ‘0)
2613fneq2i 6601 . . . . 5 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn ℕ0 ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn (ℤ‘0))
2725, 26mpbir 230 . . . 4 seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn ℕ0
28 eqfnfv 6983 . . . 4 ((𝐹 Fn ℕ0 ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn ℕ0) → (𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ↔ ∀𝑗 ∈ ℕ0 (𝐹𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗)))
2922, 27, 28mp2an 691 . . 3 (𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ↔ ∀𝑗 ∈ ℕ0 (𝐹𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗))
3020, 29sylibr 233 . 2 (𝐴 ∈ ℂ → 𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))))
319efcvg 15972 . 2 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴))
3230, 31eqbrtrd 5128 1 (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3061   class class class wbr 5106  cmpt 5189   Fn wfn 6492  cfv 6497  (class class class)co 7358  cc 11054  0cc0 11056   + caddc 11059   / cdiv 11817  0cn0 12418  cz 12504  cuz 12768  ...cfz 13430  seqcseq 13912  cexp 13973  !cfa 14179  cli 15372  Σcsu 15576  expce 15949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-pm 8771  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-inf 9384  df-oi 9451  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-n0 12419  df-z 12505  df-uz 12769  df-rp 12921  df-ico 13276  df-fz 13431  df-fzo 13574  df-fl 13703  df-seq 13913  df-exp 13974  df-fac 14180  df-hash 14237  df-shft 14958  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-limsup 15359  df-clim 15376  df-rlim 15377  df-sum 15577  df-ef 15955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator