![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efcvgfsum | Structured version Visualization version GIF version |
Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
efcvgfsum.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) |
Ref | Expression |
---|---|
efcvgfsum | ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7424 | . . . . . . . 8 ⊢ (𝑛 = 𝑗 → (0...𝑛) = (0...𝑗)) | |
2 | 1 | sumeq1d 15679 | . . . . . . 7 ⊢ (𝑛 = 𝑗 → Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
3 | efcvgfsum.1 | . . . . . . 7 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) | |
4 | sumex 15666 | . . . . . . 7 ⊢ Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘)) ∈ V | |
5 | 2, 3, 4 | fvmpt 7000 | . . . . . 6 ⊢ (𝑗 ∈ ℕ0 → (𝐹‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
6 | 5 | adantl 480 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
7 | elfznn0 13626 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0) | |
8 | 7 | adantl 480 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0) |
9 | eqid 2725 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
10 | 9 | eftval 16052 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
11 | 8, 10 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
12 | simpr 483 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0) | |
13 | nn0uz 12894 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
14 | 12, 13 | eleqtrdi 2835 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ≥‘0)) |
15 | simpll 765 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ) | |
16 | eftcl 16049 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | |
17 | 15, 8, 16 | syl2anc 582 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
18 | 11, 14, 17 | fsumser 15708 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
19 | 6, 18 | eqtrd 2765 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
20 | 19 | ralrimiva 3136 | . . 3 ⊢ (𝐴 ∈ ℂ → ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
21 | sumex 15666 | . . . . 5 ⊢ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) ∈ V | |
22 | 21, 3 | fnmpti 6693 | . . . 4 ⊢ 𝐹 Fn ℕ0 |
23 | 0z 12599 | . . . . . 6 ⊢ 0 ∈ ℤ | |
24 | seqfn 14010 | . . . . . 6 ⊢ (0 ∈ ℤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn (ℤ≥‘0)) | |
25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn (ℤ≥‘0) |
26 | 13 | fneq2i 6647 | . . . . 5 ⊢ (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn ℕ0 ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn (ℤ≥‘0)) |
27 | 25, 26 | mpbir 230 | . . . 4 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn ℕ0 |
28 | eqfnfv 7035 | . . . 4 ⊢ ((𝐹 Fn ℕ0 ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn ℕ0) → (𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ↔ ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗))) | |
29 | 22, 27, 28 | mp2an 690 | . . 3 ⊢ (𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ↔ ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
30 | 20, 29 | sylibr 233 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))) |
31 | 9 | efcvg 16061 | . 2 ⊢ (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴)) |
32 | 30, 31 | eqbrtrd 5165 | 1 ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3051 class class class wbr 5143 ↦ cmpt 5226 Fn wfn 6538 ‘cfv 6543 (class class class)co 7416 ℂcc 11136 0cc0 11138 + caddc 11141 / cdiv 11901 ℕ0cn0 12502 ℤcz 12588 ℤ≥cuz 12852 ...cfz 13516 seqcseq 13998 ↑cexp 14058 !cfa 14264 ⇝ cli 15460 Σcsu 15664 expce 16037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-pm 8846 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-ico 13362 df-fz 13517 df-fzo 13660 df-fl 13789 df-seq 13999 df-exp 14059 df-fac 14265 df-hash 14322 df-shft 15046 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-limsup 15447 df-clim 15464 df-rlim 15465 df-sum 15665 df-ef 16043 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |