MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcvgfsum Structured version   Visualization version   GIF version

Theorem efcvgfsum 16059
Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcvgfsum.1 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)))
Assertion
Ref Expression
efcvgfsum (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴))
Distinct variable group:   𝑘,𝑛,𝐴
Allowed substitution hints:   𝐹(𝑘,𝑛)

Proof of Theorem efcvgfsum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . . . . . 8 (𝑛 = 𝑗 → (0...𝑛) = (0...𝑗))
21sumeq1d 15673 . . . . . . 7 (𝑛 = 𝑗 → Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
3 efcvgfsum.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)))
4 sumex 15661 . . . . . . 7 Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)) ∈ V
52, 3, 4fvmpt 6971 . . . . . 6 (𝑗 ∈ ℕ0 → (𝐹𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
65adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)))
7 elfznn0 13588 . . . . . . . 8 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
87adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0)
9 eqid 2730 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
109eftval 16049 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
118, 10syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
12 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
13 nn0uz 12842 . . . . . . 7 0 = (ℤ‘0)
1412, 13eleqtrdi 2839 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
15 simpll 766 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ)
16 eftcl 16046 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1715, 8, 16syl2anc 584 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1811, 14, 17fsumser 15703 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)((𝐴𝑘) / (!‘𝑘)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗))
196, 18eqtrd 2765 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗))
2019ralrimiva 3126 . . 3 (𝐴 ∈ ℂ → ∀𝑗 ∈ ℕ0 (𝐹𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗))
21 sumex 15661 . . . . 5 Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) / (!‘𝑘)) ∈ V
2221, 3fnmpti 6664 . . . 4 𝐹 Fn ℕ0
23 0z 12547 . . . . . 6 0 ∈ ℤ
24 seqfn 13985 . . . . . 6 (0 ∈ ℤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn (ℤ‘0))
2523, 24ax-mp 5 . . . . 5 seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn (ℤ‘0)
2613fneq2i 6619 . . . . 5 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn ℕ0 ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn (ℤ‘0))
2725, 26mpbir 231 . . . 4 seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn ℕ0
28 eqfnfv 7006 . . . 4 ((𝐹 Fn ℕ0 ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) Fn ℕ0) → (𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ↔ ∀𝑗 ∈ ℕ0 (𝐹𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗)))
2922, 27, 28mp2an 692 . . 3 (𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ↔ ∀𝑗 ∈ ℕ0 (𝐹𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗))
3020, 29sylibr 234 . 2 (𝐴 ∈ ℂ → 𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))))
319efcvg 16058 . 2 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴))
3230, 31eqbrtrd 5132 1 (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110  cmpt 5191   Fn wfn 6509  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075   + caddc 11078   / cdiv 11842  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  seqcseq 13973  cexp 14033  !cfa 14245  cli 15457  Σcsu 15659  expce 16034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator