Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efcvgfsum | Structured version Visualization version GIF version |
Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
efcvgfsum.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) |
Ref | Expression |
---|---|
efcvgfsum | ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7283 | . . . . . . . 8 ⊢ (𝑛 = 𝑗 → (0...𝑛) = (0...𝑗)) | |
2 | 1 | sumeq1d 15413 | . . . . . . 7 ⊢ (𝑛 = 𝑗 → Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
3 | efcvgfsum.1 | . . . . . . 7 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) | |
4 | sumex 15399 | . . . . . . 7 ⊢ Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘)) ∈ V | |
5 | 2, 3, 4 | fvmpt 6875 | . . . . . 6 ⊢ (𝑗 ∈ ℕ0 → (𝐹‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
6 | 5 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
7 | elfznn0 13349 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0) | |
8 | 7 | adantl 482 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0) |
9 | eqid 2738 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
10 | 9 | eftval 15786 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
11 | 8, 10 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
12 | simpr 485 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0) | |
13 | nn0uz 12620 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
14 | 12, 13 | eleqtrdi 2849 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ≥‘0)) |
15 | simpll 764 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ) | |
16 | eftcl 15783 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | |
17 | 15, 8, 16 | syl2anc 584 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
18 | 11, 14, 17 | fsumser 15442 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
19 | 6, 18 | eqtrd 2778 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
20 | 19 | ralrimiva 3103 | . . 3 ⊢ (𝐴 ∈ ℂ → ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
21 | sumex 15399 | . . . . 5 ⊢ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) ∈ V | |
22 | 21, 3 | fnmpti 6576 | . . . 4 ⊢ 𝐹 Fn ℕ0 |
23 | 0z 12330 | . . . . . 6 ⊢ 0 ∈ ℤ | |
24 | seqfn 13733 | . . . . . 6 ⊢ (0 ∈ ℤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn (ℤ≥‘0)) | |
25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn (ℤ≥‘0) |
26 | 13 | fneq2i 6531 | . . . . 5 ⊢ (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn ℕ0 ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn (ℤ≥‘0)) |
27 | 25, 26 | mpbir 230 | . . . 4 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn ℕ0 |
28 | eqfnfv 6909 | . . . 4 ⊢ ((𝐹 Fn ℕ0 ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn ℕ0) → (𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ↔ ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗))) | |
29 | 22, 27, 28 | mp2an 689 | . . 3 ⊢ (𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ↔ ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
30 | 20, 29 | sylibr 233 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))) |
31 | 9 | efcvg 15794 | . 2 ⊢ (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴)) |
32 | 30, 31 | eqbrtrd 5096 | 1 ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 ↦ cmpt 5157 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 + caddc 10874 / cdiv 11632 ℕ0cn0 12233 ℤcz 12319 ℤ≥cuz 12582 ...cfz 13239 seqcseq 13721 ↑cexp 13782 !cfa 13987 ⇝ cli 15193 Σcsu 15397 expce 15771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-ico 13085 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-fac 13988 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |