| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efcvgfsum | Structured version Visualization version GIF version | ||
| Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
| Ref | Expression |
|---|---|
| efcvgfsum.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) |
| Ref | Expression |
|---|---|
| efcvgfsum | ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7418 | . . . . . . . 8 ⊢ (𝑛 = 𝑗 → (0...𝑛) = (0...𝑗)) | |
| 2 | 1 | sumeq1d 15721 | . . . . . . 7 ⊢ (𝑛 = 𝑗 → Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
| 3 | efcvgfsum.1 | . . . . . . 7 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) | |
| 4 | sumex 15709 | . . . . . . 7 ⊢ Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘)) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6991 | . . . . . 6 ⊢ (𝑗 ∈ ℕ0 → (𝐹‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘))) |
| 7 | elfznn0 13642 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0) | |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝑘 ∈ ℕ0) |
| 9 | eqid 2736 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
| 10 | 9 | eftval 16097 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 11 | 8, 10 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0) | |
| 13 | nn0uz 12899 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
| 14 | 12, 13 | eleqtrdi 2845 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ≥‘0)) |
| 15 | simpll 766 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → 𝐴 ∈ ℂ) | |
| 16 | eftcl 16094 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | |
| 17 | 15, 8, 16 | syl2anc 584 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 18 | 11, 14, 17 | fsumser 15751 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑗)((𝐴↑𝑘) / (!‘𝑘)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
| 19 | 6, 18 | eqtrd 2771 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
| 20 | 19 | ralrimiva 3133 | . . 3 ⊢ (𝐴 ∈ ℂ → ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
| 21 | sumex 15709 | . . . . 5 ⊢ Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘)) ∈ V | |
| 22 | 21, 3 | fnmpti 6686 | . . . 4 ⊢ 𝐹 Fn ℕ0 |
| 23 | 0z 12604 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 24 | seqfn 14036 | . . . . . 6 ⊢ (0 ∈ ℤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn (ℤ≥‘0)) | |
| 25 | 23, 24 | ax-mp 5 | . . . . 5 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn (ℤ≥‘0) |
| 26 | 13 | fneq2i 6641 | . . . . 5 ⊢ (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn ℕ0 ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn (ℤ≥‘0)) |
| 27 | 25, 26 | mpbir 231 | . . . 4 ⊢ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn ℕ0 |
| 28 | eqfnfv 7026 | . . . 4 ⊢ ((𝐹 Fn ℕ0 ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) Fn ℕ0) → (𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ↔ ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗))) | |
| 29 | 22, 27, 28 | mp2an 692 | . . 3 ⊢ (𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ↔ ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) |
| 30 | 20, 29 | sylibr 234 | . 2 ⊢ (𝐴 ∈ ℂ → 𝐹 = seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))) |
| 31 | 9 | efcvg 16106 | . 2 ⊢ (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴)) |
| 32 | 30, 31 | eqbrtrd 5146 | 1 ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 class class class wbr 5124 ↦ cmpt 5206 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 + caddc 11137 / cdiv 11899 ℕ0cn0 12506 ℤcz 12593 ℤ≥cuz 12857 ...cfz 13529 seqcseq 14024 ↑cexp 14084 !cfa 14296 ⇝ cli 15505 Σcsu 15707 expce 16082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-ico 13373 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-fac 14297 df-hash 14354 df-shft 15091 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 df-ef 16088 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |