| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgt1p2 | Structured version Visualization version GIF version | ||
| Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| efgt1p2 | ⊢ (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12777 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 1nn0 12400 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 1 ∈ ℕ0) |
| 4 | df-2 12191 | . . 3 ⊢ 2 = (1 + 1) | |
| 5 | rpcn 12904 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
| 6 | 0nn0 12399 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℕ0) |
| 8 | 1e0p1 12633 | . . . . 5 ⊢ 1 = (0 + 1) | |
| 9 | 0z 12482 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 10 | eqid 2729 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
| 11 | 10 | eftval 15983 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))) |
| 12 | 6, 11 | ax-mp 5 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)) |
| 13 | eft0val 16021 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | |
| 14 | 12, 13 | eqtrid 2776 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = 1) |
| 15 | 9, 14 | seq1i 13922 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) = 1) |
| 16 | 10 | eftval 15983 | . . . . . . 7 ⊢ (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))) |
| 17 | 2, 16 | ax-mp 5 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)) |
| 18 | fac1 14184 | . . . . . . . 8 ⊢ (!‘1) = 1 | |
| 19 | 18 | oveq2i 7360 | . . . . . . 7 ⊢ ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1) |
| 20 | exp1 13974 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 21 | 20 | oveq1d 7364 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1)) |
| 22 | div1 11814 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | |
| 23 | 21, 22 | eqtrd 2764 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴) |
| 24 | 19, 23 | eqtrid 2776 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
| 25 | 17, 24 | eqtrid 2776 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = 𝐴) |
| 26 | 1, 7, 8, 15, 25 | seqp1d 13925 | . . . 4 ⊢ (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
| 27 | 5, 26 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
| 28 | 2nn0 12401 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 29 | 10 | eftval 15983 | . . . . . 6 ⊢ (2 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2))) |
| 30 | 28, 29 | ax-mp 5 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)) |
| 31 | fac2 14186 | . . . . . 6 ⊢ (!‘2) = 2 | |
| 32 | 31 | oveq2i 7360 | . . . . 5 ⊢ ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2) |
| 33 | 30, 32 | eqtri 2752 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2) |
| 34 | 33 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2)) |
| 35 | 1, 3, 4, 27, 34 | seqp1d 13925 | . 2 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘2) = ((1 + 𝐴) + ((𝐴↑2) / 2))) |
| 36 | id 22 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+) | |
| 37 | 28 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 2 ∈ ℕ0) |
| 38 | 10, 36, 37 | effsumlt 16020 | . 2 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘2) < (exp‘𝐴)) |
| 39 | 35, 38 | eqbrtrrd 5116 | 1 ⊢ (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 1c1 11010 + caddc 11012 < clt 11149 / cdiv 11777 2c2 12183 ℕ0cn0 12384 ℝ+crp 12893 seqcseq 13908 ↑cexp 13968 !cfa 14180 expce 15968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-ico 13254 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-fac 14181 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 |
| This theorem is referenced by: cxp2limlem 26884 pntpbnd1a 27494 |
| Copyright terms: Public domain | W3C validator |