MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgt1p2 Structured version   Visualization version   GIF version

Theorem efgt1p2 16023
Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
efgt1p2 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))

Proof of Theorem efgt1p2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12774 . . 3 0 = (ℤ‘0)
2 1nn0 12397 . . . 4 1 ∈ ℕ0
32a1i 11 . . 3 (𝐴 ∈ ℝ+ → 1 ∈ ℕ0)
4 df-2 12188 . . 3 2 = (1 + 1)
5 rpcn 12901 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
6 0nn0 12396 . . . . . 6 0 ∈ ℕ0
76a1i 11 . . . . 5 (𝐴 ∈ ℂ → 0 ∈ ℕ0)
8 1e0p1 12630 . . . . 5 1 = (0 + 1)
9 0z 12479 . . . . . 6 0 ∈ ℤ
10 eqid 2731 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1110eftval 15983 . . . . . . . 8 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
126, 11ax-mp 5 . . . . . . 7 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))
13 eft0val 16021 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
1412, 13eqtrid 2778 . . . . . 6 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
159, 14seq1i 13922 . . . . 5 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
1610eftval 15983 . . . . . . 7 (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
172, 16ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))
18 fac1 14184 . . . . . . . 8 (!‘1) = 1
1918oveq2i 7357 . . . . . . 7 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
20 exp1 13974 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
2120oveq1d 7361 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
22 div1 11811 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
2321, 22eqtrd 2766 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
2419, 23eqtrid 2778 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
2517, 24eqtrid 2778 . . . . 5 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
261, 7, 8, 15, 25seqp1d 13925 . . . 4 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
275, 26syl 17 . . 3 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
28 2nn0 12398 . . . . . 6 2 ∈ ℕ0
2910eftval 15983 . . . . . 6 (2 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)))
3028, 29ax-mp 5 . . . . 5 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2))
31 fac2 14186 . . . . . 6 (!‘2) = 2
3231oveq2i 7357 . . . . 5 ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2)
3330, 32eqtri 2754 . . . 4 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2)
3433a1i 11 . . 3 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2))
351, 3, 4, 27, 34seqp1d 13925 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
36 id 22 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
3728a1i 11 . . 3 (𝐴 ∈ ℝ+ → 2 ∈ ℕ0)
3810, 36, 37effsumlt 16020 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) < (exp‘𝐴))
3935, 38eqbrtrrd 5113 1 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146   / cdiv 11774  2c2 12180  0cn0 12381  +crp 12890  seqcseq 13908  cexp 13968  !cfa 14180  expce 15968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974
This theorem is referenced by:  cxp2limlem  26913  pntpbnd1a  27523
  Copyright terms: Public domain W3C validator