![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efgt1p2 | Structured version Visualization version GIF version |
Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
efgt1p2 | ⊢ (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12895 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 1nn0 12519 | . . . 4 ⊢ 1 ∈ ℕ0 | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 1 ∈ ℕ0) |
4 | df-2 12306 | . . 3 ⊢ 2 = (1 + 1) | |
5 | rpcn 13017 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
6 | 0nn0 12518 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℕ0) |
8 | 1e0p1 12750 | . . . . 5 ⊢ 1 = (0 + 1) | |
9 | 0z 12600 | . . . . . 6 ⊢ 0 ∈ ℤ | |
10 | eqid 2728 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
11 | 10 | eftval 16053 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))) |
12 | 6, 11 | ax-mp 5 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)) |
13 | eft0val 16089 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | |
14 | 12, 13 | eqtrid 2780 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = 1) |
15 | 9, 14 | seq1i 14013 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) = 1) |
16 | 10 | eftval 16053 | . . . . . . 7 ⊢ (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))) |
17 | 2, 16 | ax-mp 5 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)) |
18 | fac1 14269 | . . . . . . . 8 ⊢ (!‘1) = 1 | |
19 | 18 | oveq2i 7431 | . . . . . . 7 ⊢ ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1) |
20 | exp1 14065 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
21 | 20 | oveq1d 7435 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1)) |
22 | div1 11934 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | |
23 | 21, 22 | eqtrd 2768 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴) |
24 | 19, 23 | eqtrid 2780 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
25 | 17, 24 | eqtrid 2780 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = 𝐴) |
26 | 1, 7, 8, 15, 25 | seqp1d 14016 | . . . 4 ⊢ (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
27 | 5, 26 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
28 | 2nn0 12520 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
29 | 10 | eftval 16053 | . . . . . 6 ⊢ (2 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2))) |
30 | 28, 29 | ax-mp 5 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)) |
31 | fac2 14271 | . . . . . 6 ⊢ (!‘2) = 2 | |
32 | 31 | oveq2i 7431 | . . . . 5 ⊢ ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2) |
33 | 30, 32 | eqtri 2756 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2) |
34 | 33 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2)) |
35 | 1, 3, 4, 27, 34 | seqp1d 14016 | . 2 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘2) = ((1 + 𝐴) + ((𝐴↑2) / 2))) |
36 | id 22 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+) | |
37 | 28 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 2 ∈ ℕ0) |
38 | 10, 36, 37 | effsumlt 16088 | . 2 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘2) < (exp‘𝐴)) |
39 | 35, 38 | eqbrtrrd 5172 | 1 ⊢ (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6548 (class class class)co 7420 ℂcc 11137 0cc0 11139 1c1 11140 + caddc 11142 < clt 11279 / cdiv 11902 2c2 12298 ℕ0cn0 12503 ℝ+crp 13007 seqcseq 13999 ↑cexp 14059 !cfa 14265 expce 16038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9466 df-inf 9467 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-z 12590 df-uz 12854 df-rp 13008 df-ico 13363 df-fz 13518 df-fzo 13661 df-fl 13790 df-seq 14000 df-exp 14060 df-fac 14266 df-hash 14323 df-shft 15047 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-limsup 15448 df-clim 15465 df-rlim 15466 df-sum 15666 df-ef 16044 |
This theorem is referenced by: cxp2limlem 26921 pntpbnd1a 27531 |
Copyright terms: Public domain | W3C validator |