MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgt1p2 Structured version   Visualization version   GIF version

Theorem efgt1p2 15459
Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
efgt1p2 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))

Proof of Theorem efgt1p2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12268 . . 3 0 = (ℤ‘0)
2 1nn0 11901 . . . 4 1 ∈ ℕ0
32a1i 11 . . 3 (𝐴 ∈ ℝ+ → 1 ∈ ℕ0)
4 df-2 11688 . . 3 2 = (1 + 1)
5 rpcn 12387 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
6 0nn0 11900 . . . . . 6 0 ∈ ℕ0
76a1i 11 . . . . 5 (𝐴 ∈ ℂ → 0 ∈ ℕ0)
8 1e0p1 12128 . . . . 5 1 = (0 + 1)
9 0z 11980 . . . . . 6 0 ∈ ℤ
10 eqid 2798 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1110eftval 15422 . . . . . . . 8 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
126, 11ax-mp 5 . . . . . . 7 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))
13 eft0val 15457 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
1412, 13syl5eq 2845 . . . . . 6 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
159, 14seq1i 13378 . . . . 5 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
1610eftval 15422 . . . . . . 7 (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
172, 16ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))
18 fac1 13633 . . . . . . . 8 (!‘1) = 1
1918oveq2i 7146 . . . . . . 7 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
20 exp1 13431 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
2120oveq1d 7150 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
22 div1 11318 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
2321, 22eqtrd 2833 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
2419, 23syl5eq 2845 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
2517, 24syl5eq 2845 . . . . 5 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
261, 7, 8, 15, 25seqp1d 13381 . . . 4 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
275, 26syl 17 . . 3 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
28 2nn0 11902 . . . . . 6 2 ∈ ℕ0
2910eftval 15422 . . . . . 6 (2 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)))
3028, 29ax-mp 5 . . . . 5 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2))
31 fac2 13635 . . . . . 6 (!‘2) = 2
3231oveq2i 7146 . . . . 5 ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2)
3330, 32eqtri 2821 . . . 4 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2)
3433a1i 11 . . 3 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2))
351, 3, 4, 27, 34seqp1d 13381 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
36 id 22 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
3728a1i 11 . . 3 (𝐴 ∈ ℝ+ → 2 ∈ ℕ0)
3810, 36, 37effsumlt 15456 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) < (exp‘𝐴))
3935, 38eqbrtrrd 5054 1 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664   / cdiv 11286  2c2 11680  0cn0 11885  +crp 12377  seqcseq 13364  cexp 13425  !cfa 13629  expce 15407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-fac 13630  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413
This theorem is referenced by:  cxp2limlem  25561  pntpbnd1a  26169
  Copyright terms: Public domain W3C validator