MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgt1p2 Structured version   Visualization version   GIF version

Theorem efgt1p2 15217
Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
efgt1p2 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))

Proof of Theorem efgt1p2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12005 . . 3 0 = (ℤ‘0)
2 1nn0 11637 . . 3 1 ∈ ℕ0
3 df-2 11415 . . 3 2 = (1 + 1)
4 rpcn 12125 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
5 0nn0 11636 . . . . 5 0 ∈ ℕ0
6 1e0p1 11865 . . . . 5 1 = (0 + 1)
7 0z 11716 . . . . . 6 0 ∈ ℤ
8 eqid 2826 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
98eftval 15180 . . . . . . . 8 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
105, 9ax-mp 5 . . . . . . 7 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))
11 eft0val 15215 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
1210, 11syl5eq 2874 . . . . . 6 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
137, 12seq1i 13110 . . . . 5 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
148eftval 15180 . . . . . . 7 (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
152, 14ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))
16 fac1 13358 . . . . . . . 8 (!‘1) = 1
1716oveq2i 6917 . . . . . . 7 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
18 exp1 13161 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1918oveq1d 6921 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
20 div1 11042 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
2119, 20eqtrd 2862 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
2217, 21syl5eq 2874 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
2315, 22syl5eq 2874 . . . . 5 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
241, 5, 6, 13, 23seqp1i 13112 . . . 4 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
254, 24syl 17 . . 3 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
26 2nn0 11638 . . . . . 6 2 ∈ ℕ0
278eftval 15180 . . . . . 6 (2 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)))
2826, 27ax-mp 5 . . . . 5 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2))
29 fac2 13360 . . . . . 6 (!‘2) = 2
3029oveq2i 6917 . . . . 5 ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2)
3128, 30eqtri 2850 . . . 4 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2)
3231a1i 11 . . 3 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2))
331, 2, 3, 25, 32seqp1i 13112 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
34 id 22 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
3526a1i 11 . . 3 (𝐴 ∈ ℝ+ → 2 ∈ ℕ0)
368, 34, 35effsumlt 15214 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) < (exp‘𝐴))
3733, 36eqbrtrrd 4898 1 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166   class class class wbr 4874  cmpt 4953  cfv 6124  (class class class)co 6906  cc 10251  0cc0 10253  1c1 10254   + caddc 10256   < clt 10392   / cdiv 11010  2c2 11407  0cn0 11619  +crp 12113  seqcseq 13096  cexp 13155  !cfa 13354  expce 15165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331  ax-addf 10332  ax-mulf 10333
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-pm 8126  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-sup 8618  df-inf 8619  df-oi 8685  df-card 9079  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-n0 11620  df-z 11706  df-uz 11970  df-rp 12114  df-ico 12470  df-fz 12621  df-fzo 12762  df-fl 12889  df-seq 13097  df-exp 13156  df-fac 13355  df-hash 13412  df-shft 14185  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-limsup 14580  df-clim 14597  df-rlim 14598  df-sum 14795  df-ef 15171
This theorem is referenced by:  cxp2limlem  25116  pntpbnd1a  25688
  Copyright terms: Public domain W3C validator