| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgt1p2 | Structured version Visualization version GIF version | ||
| Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| efgt1p2 | ⊢ (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12920 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 1nn0 12542 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 1 ∈ ℕ0) |
| 4 | df-2 12329 | . . 3 ⊢ 2 = (1 + 1) | |
| 5 | rpcn 13045 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
| 6 | 0nn0 12541 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ∈ ℕ0) |
| 8 | 1e0p1 12775 | . . . . 5 ⊢ 1 = (0 + 1) | |
| 9 | 0z 12624 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 10 | eqid 2737 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
| 11 | 10 | eftval 16112 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))) |
| 12 | 6, 11 | ax-mp 5 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)) |
| 13 | eft0val 16148 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1) | |
| 14 | 12, 13 | eqtrid 2789 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = 1) |
| 15 | 9, 14 | seq1i 14056 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) = 1) |
| 16 | 10 | eftval 16112 | . . . . . . 7 ⊢ (1 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))) |
| 17 | 2, 16 | ax-mp 5 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)) |
| 18 | fac1 14316 | . . . . . . . 8 ⊢ (!‘1) = 1 | |
| 19 | 18 | oveq2i 7442 | . . . . . . 7 ⊢ ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1) |
| 20 | exp1 14108 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 21 | 20 | oveq1d 7446 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1)) |
| 22 | div1 11957 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | |
| 23 | 21, 22 | eqtrd 2777 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴) |
| 24 | 19, 23 | eqtrid 2789 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
| 25 | 17, 24 | eqtrid 2789 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = 𝐴) |
| 26 | 1, 7, 8, 15, 25 | seqp1d 14059 | . . . 4 ⊢ (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
| 27 | 5, 26 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
| 28 | 2nn0 12543 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 29 | 10 | eftval 16112 | . . . . . 6 ⊢ (2 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2))) |
| 30 | 28, 29 | ax-mp 5 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)) |
| 31 | fac2 14318 | . . . . . 6 ⊢ (!‘2) = 2 | |
| 32 | 31 | oveq2i 7442 | . . . . 5 ⊢ ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2) |
| 33 | 30, 32 | eqtri 2765 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2) |
| 34 | 33 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2)) |
| 35 | 1, 3, 4, 27, 34 | seqp1d 14059 | . 2 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘2) = ((1 + 𝐴) + ((𝐴↑2) / 2))) |
| 36 | id 22 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+) | |
| 37 | 28 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 2 ∈ ℕ0) |
| 38 | 10, 36, 37 | effsumlt 16147 | . 2 ⊢ (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘2) < (exp‘𝐴)) |
| 39 | 35, 38 | eqbrtrrd 5167 | 1 ⊢ (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 0cc0 11155 1c1 11156 + caddc 11158 < clt 11295 / cdiv 11920 2c2 12321 ℕ0cn0 12526 ℝ+crp 13034 seqcseq 14042 ↑cexp 14102 !cfa 14312 expce 16097 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-ico 13393 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-fac 14313 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 df-ef 16103 |
| This theorem is referenced by: cxp2limlem 27019 pntpbnd1a 27629 |
| Copyright terms: Public domain | W3C validator |