MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efaddlem Structured version   Visualization version   GIF version

Theorem efaddlem 15538
Description: Lemma for efadd 15539 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
efadd.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
efadd.2 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵𝑛) / (!‘𝑛)))
efadd.3 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛)))
efadd.4 (𝜑𝐴 ∈ ℂ)
efadd.5 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
efaddlem (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑛)

Proof of Theorem efaddlem
Dummy variables 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efadd.4 . . . 4 (𝜑𝐴 ∈ ℂ)
2 efadd.5 . . . 4 (𝜑𝐵 ∈ ℂ)
31, 2addcld 10738 . . 3 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
4 efadd.3 . . . 4 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛)))
54efcvg 15530 . . 3 ((𝐴 + 𝐵) ∈ ℂ → seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)))
63, 5syl 17 . 2 (𝜑 → seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)))
7 efadd.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
87eftval 15522 . . . . 5 (𝑗 ∈ ℕ0 → (𝐹𝑗) = ((𝐴𝑗) / (!‘𝑗)))
98adantl 485 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = ((𝐴𝑗) / (!‘𝑗)))
10 absexp 14754 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗))
111, 10sylan 583 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗))
12 faccl 13735 . . . . . . . 8 (𝑗 ∈ ℕ0 → (!‘𝑗) ∈ ℕ)
1312adantl 485 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) ∈ ℕ)
14 nnre 11723 . . . . . . . 8 ((!‘𝑗) ∈ ℕ → (!‘𝑗) ∈ ℝ)
15 nnnn0 11983 . . . . . . . . 9 ((!‘𝑗) ∈ ℕ → (!‘𝑗) ∈ ℕ0)
1615nn0ge0d 12039 . . . . . . . 8 ((!‘𝑗) ∈ ℕ → 0 ≤ (!‘𝑗))
1714, 16absidd 14872 . . . . . . 7 ((!‘𝑗) ∈ ℕ → (abs‘(!‘𝑗)) = (!‘𝑗))
1813, 17syl 17 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘(!‘𝑗)) = (!‘𝑗))
1911, 18oveq12d 7188 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((abs‘(𝐴𝑗)) / (abs‘(!‘𝑗))) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
20 expcl 13539 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
211, 20sylan 583 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
2213nncnd 11732 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) ∈ ℂ)
2313nnne0d 11766 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) ≠ 0)
2421, 22, 23absdivd 14905 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (abs‘((𝐴𝑗) / (!‘𝑗))) = ((abs‘(𝐴𝑗)) / (abs‘(!‘𝑗))))
25 eqid 2738 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
2625eftval 15522 . . . . . 6 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
2726adantl 485 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
2819, 24, 273eqtr4rd 2784 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (abs‘((𝐴𝑗) / (!‘𝑗))))
29 eftcl 15519 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
301, 29sylan 583 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
31 efadd.2 . . . . . 6 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵𝑛) / (!‘𝑛)))
3231eftval 15522 . . . . 5 (𝑘 ∈ ℕ0 → (𝐺𝑘) = ((𝐵𝑘) / (!‘𝑘)))
3332adantl 485 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = ((𝐵𝑘) / (!‘𝑘)))
34 eftcl 15519 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) / (!‘𝑘)) ∈ ℂ)
352, 34sylan 583 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐵𝑘) / (!‘𝑘)) ∈ ℂ)
364eftval 15522 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐻𝑘) = (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)))
3736adantl 485 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)))
381adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
392adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
40 simpr 488 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
41 binom 15278 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
4238, 39, 40, 41syl3anc 1372 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
4342oveq1d 7185 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)) = (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
44 fzfid 13432 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
45 faccl 13735 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4645adantl 485 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
4746nncnd 11732 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
48 bccl2 13775 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑘) → (𝑘C𝑗) ∈ ℕ)
4948adantl 485 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) ∈ ℕ)
5049nncnd 11732 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) ∈ ℂ)
511ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐴 ∈ ℂ)
52 fznn0sub 13030 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑘) → (𝑘𝑗) ∈ ℕ0)
5352adantl 485 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ ℕ0)
5451, 53expcld 13602 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴↑(𝑘𝑗)) ∈ ℂ)
552ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐵 ∈ ℂ)
56 elfznn0 13091 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℕ0)
5756adantl 485 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℕ0)
5855, 57expcld 13602 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐵𝑗) ∈ ℂ)
5954, 58mulcld 10739 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) ∈ ℂ)
6050, 59mulcld 10739 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) ∈ ℂ)
6146nnne0d 11766 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ≠ 0)
6244, 47, 60, 61fsumdivc 15234 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
6351, 57expcld 13602 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴𝑗) ∈ ℂ)
6457, 12syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ∈ ℕ)
6564nncnd 11732 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ∈ ℂ)
6664nnne0d 11766 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ≠ 0)
6763, 65, 66divcld 11494 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
6831eftval 15522 . . . . . . . . . . . 12 ((𝑘𝑗) ∈ ℕ0 → (𝐺‘(𝑘𝑗)) = ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
6953, 68syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘𝑗)) = ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
7055, 53expcld 13602 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐵↑(𝑘𝑗)) ∈ ℂ)
71 faccl 13735 . . . . . . . . . . . . . 14 ((𝑘𝑗) ∈ ℕ0 → (!‘(𝑘𝑗)) ∈ ℕ)
7253, 71syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) ∈ ℕ)
7372nncnd 11732 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) ∈ ℂ)
7472nnne0d 11766 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) ≠ 0)
7570, 73, 74divcld 11494 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))) ∈ ℂ)
7669, 75eqeltrd 2833 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘𝑗)) ∈ ℂ)
7767, 76mulcld 10739 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) ∈ ℂ)
78 oveq2 7178 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝐴𝑗) = (𝐴↑((0 + 𝑘) − 𝑚)))
79 fveq2 6674 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (!‘𝑗) = (!‘((0 + 𝑘) − 𝑚)))
8078, 79oveq12d 7188 . . . . . . . . . 10 (𝑗 = ((0 + 𝑘) − 𝑚) → ((𝐴𝑗) / (!‘𝑗)) = ((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))))
81 oveq2 7178 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝑘𝑗) = (𝑘 − ((0 + 𝑘) − 𝑚)))
8281fveq2d 6678 . . . . . . . . . 10 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝐺‘(𝑘𝑗)) = (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
8380, 82oveq12d 7188 . . . . . . . . 9 (𝑗 = ((0 + 𝑘) − 𝑚) → (((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = (((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
8477, 83fsumrev2 15230 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
8531eftval 15522 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0 → (𝐺𝑗) = ((𝐵𝑗) / (!‘𝑗)))
8657, 85syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺𝑗) = ((𝐵𝑗) / (!‘𝑗)))
8786oveq2d 7186 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))))
8872, 64nnmulcld 11769 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) ∈ ℕ)
8988nncnd 11732 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) ∈ ℂ)
9088nnne0d 11766 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) ≠ 0)
9159, 89, 90divrec2d 11498 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) / ((!‘(𝑘𝑗)) · (!‘𝑗))) = ((1 / ((!‘(𝑘𝑗)) · (!‘𝑗))) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
9254, 73, 58, 65, 74, 66divmuldivd 11535 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))) = (((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
93 bcval2 13757 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑘) → (𝑘C𝑗) = ((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
9493adantl 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) = ((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
9594oveq1d 7185 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) / (!‘𝑘)) = (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)))
9647adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑘) ∈ ℂ)
9761adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑘) ≠ 0)
9896, 89, 96, 90, 97divdiv32d 11519 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)) = (((!‘𝑘) / (!‘𝑘)) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
9996, 97dividd 11492 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘𝑘) / (!‘𝑘)) = 1)
10099oveq1d 7185 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / (!‘𝑘)) / ((!‘(𝑘𝑗)) · (!‘𝑗))) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
10198, 100eqtrd 2773 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
10295, 101eqtrd 2773 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) / (!‘𝑘)) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
103102oveq1d 7185 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) = ((1 / ((!‘(𝑘𝑗)) · (!‘𝑗))) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
10491, 92, 1033eqtr4rd 2784 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))))
10587, 104eqtr4d 2776 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)) = (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
106 nn0cn 11986 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
107106ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℂ)
108107addid2d 10919 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (0 + 𝑘) = 𝑘)
109108oveq1d 7185 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((0 + 𝑘) − 𝑗) = (𝑘𝑗))
110109oveq2d 7186 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴↑((0 + 𝑘) − 𝑗)) = (𝐴↑(𝑘𝑗)))
111109fveq2d 6678 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘((0 + 𝑘) − 𝑗)) = (!‘(𝑘𝑗)))
112110, 111oveq12d 7188 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) = ((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
113109oveq2d 7186 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − ((0 + 𝑘) − 𝑗)) = (𝑘 − (𝑘𝑗)))
114 nn0cn 11986 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
11557, 114syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℂ)
116107, 115nncand 11080 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − (𝑘𝑗)) = 𝑗)
117113, 116eqtrd 2773 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − ((0 + 𝑘) − 𝑗)) = 𝑗)
118117fveq2d 6678 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗))) = (𝐺𝑗))
119112, 118oveq12d 7188 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)))
12050, 59, 96, 97div23d 11531 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
121105, 119, 1203eqtr4rd 2784 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))))
122121sumeq2dv 15153 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))))
123 oveq2 7178 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → ((0 + 𝑘) − 𝑗) = ((0 + 𝑘) − 𝑚))
124123oveq2d 7186 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (𝐴↑((0 + 𝑘) − 𝑗)) = (𝐴↑((0 + 𝑘) − 𝑚)))
125123fveq2d 6678 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (!‘((0 + 𝑘) − 𝑗)) = (!‘((0 + 𝑘) − 𝑚)))
126124, 125oveq12d 7188 . . . . . . . . . . 11 (𝑗 = 𝑚 → ((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) = ((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))))
127123oveq2d 7186 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (𝑘 − ((0 + 𝑘) − 𝑗)) = (𝑘 − ((0 + 𝑘) − 𝑚)))
128127fveq2d 6678 . . . . . . . . . . 11 (𝑗 = 𝑚 → (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗))) = (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
129126, 128oveq12d 7188 . . . . . . . . . 10 (𝑗 = 𝑚 → (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = (((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
130129cbvsumv 15146 . . . . . . . . 9 Σ𝑗 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
131122, 130eqtrdi 2789 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
13284, 131eqtr4d 2776 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
13362, 132eqtr4d 2776 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
13443, 133eqtrd 2773 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
13537, 134eqtrd 2773 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
1361abscld 14886 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ)
137136recnd 10747 . . . . 5 (𝜑 → (abs‘𝐴) ∈ ℂ)
13825efcllem 15523 . . . . 5 ((abs‘𝐴) ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
139137, 138syl 17 . . . 4 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
14031efcllem 15523 . . . . 5 (𝐵 ∈ ℂ → seq0( + , 𝐺) ∈ dom ⇝ )
1412, 140syl 17 . . . 4 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
1429, 28, 30, 33, 35, 135, 139, 141mertens 15334 . . 3 (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)) · Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘))))
143 efval 15525 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)))
1441, 143syl 17 . . . 4 (𝜑 → (exp‘𝐴) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)))
145 efval 15525 . . . . 5 (𝐵 ∈ ℂ → (exp‘𝐵) = Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘)))
1462, 145syl 17 . . . 4 (𝜑 → (exp‘𝐵) = Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘)))
147144, 146oveq12d 7188 . . 3 (𝜑 → ((exp‘𝐴) · (exp‘𝐵)) = (Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)) · Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘))))
148142, 147breqtrrd 5058 . 2 (𝜑 → seq0( + , 𝐻) ⇝ ((exp‘𝐴) · (exp‘𝐵)))
149 climuni 14999 . 2 ((seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)) ∧ seq0( + , 𝐻) ⇝ ((exp‘𝐴) · (exp‘𝐵))) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
1506, 148, 149syl2anc 587 1 (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wne 2934   class class class wbr 5030  cmpt 5110  dom cdm 5525  cfv 6339  (class class class)co 7170  cc 10613  0cc0 10615  1c1 10616   + caddc 10618   · cmul 10620  cmin 10948   / cdiv 11375  cn 11716  0cn0 11976  ...cfz 12981  seqcseq 13460  cexp 13521  !cfa 13725  Ccbc 13754  abscabs 14683  cli 14931  Σcsu 15135  expce 15507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-ico 12827  df-fz 12982  df-fzo 13125  df-fl 13253  df-seq 13461  df-exp 13522  df-fac 13726  df-bc 13755  df-hash 13783  df-shft 14516  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-limsup 14918  df-clim 14935  df-rlim 14936  df-sum 15136  df-ef 15513
This theorem is referenced by:  efadd  15539
  Copyright terms: Public domain W3C validator