MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efaddlem Structured version   Visualization version   GIF version

Theorem efaddlem 16032
Description: Lemma for efadd 16033 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
efadd.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
efadd.2 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵𝑛) / (!‘𝑛)))
efadd.3 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛)))
efadd.4 (𝜑𝐴 ∈ ℂ)
efadd.5 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
efaddlem (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑛)

Proof of Theorem efaddlem
Dummy variables 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efadd.4 . . . 4 (𝜑𝐴 ∈ ℂ)
2 efadd.5 . . . 4 (𝜑𝐵 ∈ ℂ)
31, 2addcld 11229 . . 3 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
4 efadd.3 . . . 4 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛)))
54efcvg 16024 . . 3 ((𝐴 + 𝐵) ∈ ℂ → seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)))
63, 5syl 17 . 2 (𝜑 → seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)))
7 efadd.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
87eftval 16016 . . . . 5 (𝑗 ∈ ℕ0 → (𝐹𝑗) = ((𝐴𝑗) / (!‘𝑗)))
98adantl 482 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = ((𝐴𝑗) / (!‘𝑗)))
10 absexp 15247 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗))
111, 10sylan 580 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗))
12 faccl 14239 . . . . . . . 8 (𝑗 ∈ ℕ0 → (!‘𝑗) ∈ ℕ)
1312adantl 482 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) ∈ ℕ)
14 nnre 12215 . . . . . . . 8 ((!‘𝑗) ∈ ℕ → (!‘𝑗) ∈ ℝ)
15 nnnn0 12475 . . . . . . . . 9 ((!‘𝑗) ∈ ℕ → (!‘𝑗) ∈ ℕ0)
1615nn0ge0d 12531 . . . . . . . 8 ((!‘𝑗) ∈ ℕ → 0 ≤ (!‘𝑗))
1714, 16absidd 15365 . . . . . . 7 ((!‘𝑗) ∈ ℕ → (abs‘(!‘𝑗)) = (!‘𝑗))
1813, 17syl 17 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘(!‘𝑗)) = (!‘𝑗))
1911, 18oveq12d 7423 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((abs‘(𝐴𝑗)) / (abs‘(!‘𝑗))) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
20 expcl 14041 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
211, 20sylan 580 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
2213nncnd 12224 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) ∈ ℂ)
2313nnne0d 12258 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) ≠ 0)
2421, 22, 23absdivd 15398 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (abs‘((𝐴𝑗) / (!‘𝑗))) = ((abs‘(𝐴𝑗)) / (abs‘(!‘𝑗))))
25 eqid 2732 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
2625eftval 16016 . . . . . 6 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
2726adantl 482 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
2819, 24, 273eqtr4rd 2783 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (abs‘((𝐴𝑗) / (!‘𝑗))))
29 eftcl 16013 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
301, 29sylan 580 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
31 efadd.2 . . . . . 6 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵𝑛) / (!‘𝑛)))
3231eftval 16016 . . . . 5 (𝑘 ∈ ℕ0 → (𝐺𝑘) = ((𝐵𝑘) / (!‘𝑘)))
3332adantl 482 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = ((𝐵𝑘) / (!‘𝑘)))
34 eftcl 16013 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) / (!‘𝑘)) ∈ ℂ)
352, 34sylan 580 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐵𝑘) / (!‘𝑘)) ∈ ℂ)
364eftval 16016 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐻𝑘) = (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)))
3736adantl 482 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)))
381adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
392adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
40 simpr 485 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
41 binom 15772 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
4238, 39, 40, 41syl3anc 1371 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
4342oveq1d 7420 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)) = (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
44 fzfid 13934 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
45 faccl 14239 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4645adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
4746nncnd 12224 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
48 bccl2 14279 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑘) → (𝑘C𝑗) ∈ ℕ)
4948adantl 482 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) ∈ ℕ)
5049nncnd 12224 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) ∈ ℂ)
511ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐴 ∈ ℂ)
52 fznn0sub 13529 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑘) → (𝑘𝑗) ∈ ℕ0)
5352adantl 482 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ ℕ0)
5451, 53expcld 14107 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴↑(𝑘𝑗)) ∈ ℂ)
552ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐵 ∈ ℂ)
56 elfznn0 13590 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℕ0)
5756adantl 482 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℕ0)
5855, 57expcld 14107 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐵𝑗) ∈ ℂ)
5954, 58mulcld 11230 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) ∈ ℂ)
6050, 59mulcld 11230 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) ∈ ℂ)
6146nnne0d 12258 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ≠ 0)
6244, 47, 60, 61fsumdivc 15728 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
6351, 57expcld 14107 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴𝑗) ∈ ℂ)
6457, 12syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ∈ ℕ)
6564nncnd 12224 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ∈ ℂ)
6664nnne0d 12258 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ≠ 0)
6763, 65, 66divcld 11986 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
6831eftval 16016 . . . . . . . . . . . 12 ((𝑘𝑗) ∈ ℕ0 → (𝐺‘(𝑘𝑗)) = ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
6953, 68syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘𝑗)) = ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
7055, 53expcld 14107 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐵↑(𝑘𝑗)) ∈ ℂ)
71 faccl 14239 . . . . . . . . . . . . . 14 ((𝑘𝑗) ∈ ℕ0 → (!‘(𝑘𝑗)) ∈ ℕ)
7253, 71syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) ∈ ℕ)
7372nncnd 12224 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) ∈ ℂ)
7472nnne0d 12258 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) ≠ 0)
7570, 73, 74divcld 11986 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))) ∈ ℂ)
7669, 75eqeltrd 2833 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘𝑗)) ∈ ℂ)
7767, 76mulcld 11230 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) ∈ ℂ)
78 oveq2 7413 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝐴𝑗) = (𝐴↑((0 + 𝑘) − 𝑚)))
79 fveq2 6888 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (!‘𝑗) = (!‘((0 + 𝑘) − 𝑚)))
8078, 79oveq12d 7423 . . . . . . . . . 10 (𝑗 = ((0 + 𝑘) − 𝑚) → ((𝐴𝑗) / (!‘𝑗)) = ((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))))
81 oveq2 7413 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝑘𝑗) = (𝑘 − ((0 + 𝑘) − 𝑚)))
8281fveq2d 6892 . . . . . . . . . 10 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝐺‘(𝑘𝑗)) = (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
8380, 82oveq12d 7423 . . . . . . . . 9 (𝑗 = ((0 + 𝑘) − 𝑚) → (((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = (((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
8477, 83fsumrev2 15724 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
8531eftval 16016 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0 → (𝐺𝑗) = ((𝐵𝑗) / (!‘𝑗)))
8657, 85syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺𝑗) = ((𝐵𝑗) / (!‘𝑗)))
8786oveq2d 7421 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))))
8872, 64nnmulcld 12261 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) ∈ ℕ)
8988nncnd 12224 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) ∈ ℂ)
9088nnne0d 12258 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) ≠ 0)
9159, 89, 90divrec2d 11990 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) / ((!‘(𝑘𝑗)) · (!‘𝑗))) = ((1 / ((!‘(𝑘𝑗)) · (!‘𝑗))) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
9254, 73, 58, 65, 74, 66divmuldivd 12027 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))) = (((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
93 bcval2 14261 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑘) → (𝑘C𝑗) = ((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
9493adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) = ((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
9594oveq1d 7420 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) / (!‘𝑘)) = (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)))
9647adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑘) ∈ ℂ)
9761adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑘) ≠ 0)
9896, 89, 96, 90, 97divdiv32d 12011 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)) = (((!‘𝑘) / (!‘𝑘)) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
9996, 97dividd 11984 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘𝑘) / (!‘𝑘)) = 1)
10099oveq1d 7420 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / (!‘𝑘)) / ((!‘(𝑘𝑗)) · (!‘𝑗))) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
10198, 100eqtrd 2772 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
10295, 101eqtrd 2772 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) / (!‘𝑘)) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
103102oveq1d 7420 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) = ((1 / ((!‘(𝑘𝑗)) · (!‘𝑗))) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
10491, 92, 1033eqtr4rd 2783 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))))
10587, 104eqtr4d 2775 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)) = (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
106 nn0cn 12478 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
107106ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℂ)
108107addlidd 11411 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (0 + 𝑘) = 𝑘)
109108oveq1d 7420 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((0 + 𝑘) − 𝑗) = (𝑘𝑗))
110109oveq2d 7421 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴↑((0 + 𝑘) − 𝑗)) = (𝐴↑(𝑘𝑗)))
111109fveq2d 6892 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘((0 + 𝑘) − 𝑗)) = (!‘(𝑘𝑗)))
112110, 111oveq12d 7423 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) = ((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
113109oveq2d 7421 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − ((0 + 𝑘) − 𝑗)) = (𝑘 − (𝑘𝑗)))
114 nn0cn 12478 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
11557, 114syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℂ)
116107, 115nncand 11572 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − (𝑘𝑗)) = 𝑗)
117113, 116eqtrd 2772 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − ((0 + 𝑘) − 𝑗)) = 𝑗)
118117fveq2d 6892 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗))) = (𝐺𝑗))
119112, 118oveq12d 7423 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)))
12050, 59, 96, 97div23d 12023 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
121105, 119, 1203eqtr4rd 2783 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))))
122121sumeq2dv 15645 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))))
123 oveq2 7413 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → ((0 + 𝑘) − 𝑗) = ((0 + 𝑘) − 𝑚))
124123oveq2d 7421 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (𝐴↑((0 + 𝑘) − 𝑗)) = (𝐴↑((0 + 𝑘) − 𝑚)))
125123fveq2d 6892 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (!‘((0 + 𝑘) − 𝑗)) = (!‘((0 + 𝑘) − 𝑚)))
126124, 125oveq12d 7423 . . . . . . . . . . 11 (𝑗 = 𝑚 → ((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) = ((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))))
127123oveq2d 7421 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (𝑘 − ((0 + 𝑘) − 𝑗)) = (𝑘 − ((0 + 𝑘) − 𝑚)))
128127fveq2d 6892 . . . . . . . . . . 11 (𝑗 = 𝑚 → (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗))) = (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
129126, 128oveq12d 7423 . . . . . . . . . 10 (𝑗 = 𝑚 → (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = (((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
130129cbvsumv 15638 . . . . . . . . 9 Σ𝑗 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
131122, 130eqtrdi 2788 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
13284, 131eqtr4d 2775 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
13362, 132eqtr4d 2775 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
13443, 133eqtrd 2772 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
13537, 134eqtrd 2772 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
1361abscld 15379 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ)
137136recnd 11238 . . . . 5 (𝜑 → (abs‘𝐴) ∈ ℂ)
13825efcllem 16017 . . . . 5 ((abs‘𝐴) ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
139137, 138syl 17 . . . 4 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
14031efcllem 16017 . . . . 5 (𝐵 ∈ ℂ → seq0( + , 𝐺) ∈ dom ⇝ )
1412, 140syl 17 . . . 4 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
1429, 28, 30, 33, 35, 135, 139, 141mertens 15828 . . 3 (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)) · Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘))))
143 efval 16019 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)))
1441, 143syl 17 . . . 4 (𝜑 → (exp‘𝐴) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)))
145 efval 16019 . . . . 5 (𝐵 ∈ ℂ → (exp‘𝐵) = Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘)))
1462, 145syl 17 . . . 4 (𝜑 → (exp‘𝐵) = Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘)))
147144, 146oveq12d 7423 . . 3 (𝜑 → ((exp‘𝐴) · (exp‘𝐵)) = (Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)) · Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘))))
148142, 147breqtrrd 5175 . 2 (𝜑 → seq0( + , 𝐻) ⇝ ((exp‘𝐴) · (exp‘𝐵)))
149 climuni 15492 . 2 ((seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)) ∧ seq0( + , 𝐻) ⇝ ((exp‘𝐴) · (exp‘𝐵))) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
1506, 148, 149syl2anc 584 1 (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940   class class class wbr 5147  cmpt 5230  dom cdm 5675  cfv 6540  (class class class)co 7405  cc 11104  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111  cmin 11440   / cdiv 11867  cn 12208  0cn0 12468  ...cfz 13480  seqcseq 13962  cexp 14023  !cfa 14229  Ccbc 14258  abscabs 15177  cli 15424  Σcsu 15628  expce 16001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007
This theorem is referenced by:  efadd  16033
  Copyright terms: Public domain W3C validator