MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efsep Structured version   Visualization version   GIF version

Theorem efsep 15039
Description: Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
efsep.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
efsep.2 𝑁 = (𝑀 + 1)
efsep.3 𝑀 ∈ ℕ0
efsep.4 (𝜑𝐴 ∈ ℂ)
efsep.5 (𝜑𝐵 ∈ ℂ)
efsep.6 (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)))
efsep.7 (𝜑 → (𝐵 + ((𝐴𝑀) / (!‘𝑀))) = 𝐷)
Assertion
Ref Expression
efsep (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹   𝑘,𝑀,𝑛   𝑘,𝑁,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝐵(𝑘,𝑛)   𝐷(𝑘,𝑛)   𝐹(𝑛)

Proof of Theorem efsep
StepHypRef Expression
1 efsep.6 . 2 (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)))
2 eqid 2771 . . . . . 6 (ℤ𝑀) = (ℤ𝑀)
3 efsep.3 . . . . . . . 8 𝑀 ∈ ℕ0
43nn0zi 11602 . . . . . . 7 𝑀 ∈ ℤ
54a1i 11 . . . . . 6 (𝜑𝑀 ∈ ℤ)
6 eqidd 2772 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐹𝑘))
7 eluznn0 11958 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
83, 7mpan 670 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℕ0)
9 efsep.1 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
109eftval 15006 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
1110adantl 467 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
12 efsep.4 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
13 eftcl 15003 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1412, 13sylan 569 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1511, 14eqeltrd 2850 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
168, 15sylan2 580 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
179eftlcvg 15035 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
1812, 3, 17sylancl 574 . . . . . 6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
192, 5, 6, 16, 18isum1p 14773 . . . . 5 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑘)))
209eftval 15006 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝐹𝑀) = ((𝐴𝑀) / (!‘𝑀)))
213, 20ax-mp 5 . . . . . 6 (𝐹𝑀) = ((𝐴𝑀) / (!‘𝑀))
22 efsep.2 . . . . . . . . 9 𝑁 = (𝑀 + 1)
2322eqcomi 2780 . . . . . . . 8 (𝑀 + 1) = 𝑁
2423fveq2i 6333 . . . . . . 7 (ℤ‘(𝑀 + 1)) = (ℤ𝑁)
2524sumeq1i 14629 . . . . . 6 Σ𝑘 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑘) = Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘)
2621, 25oveq12i 6803 . . . . 5 ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))(𝐹𝑘)) = (((𝐴𝑀) / (!‘𝑀)) + Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘))
2719, 26syl6eq 2821 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = (((𝐴𝑀) / (!‘𝑀)) + Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘)))
2827oveq2d 6807 . . 3 (𝜑 → (𝐵 + Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) = (𝐵 + (((𝐴𝑀) / (!‘𝑀)) + Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘))))
29 efsep.5 . . . 4 (𝜑𝐵 ∈ ℂ)
30 eftcl 15003 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) / (!‘𝑀)) ∈ ℂ)
3112, 3, 30sylancl 574 . . . 4 (𝜑 → ((𝐴𝑀) / (!‘𝑀)) ∈ ℂ)
32 peano2nn0 11533 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
333, 32ax-mp 5 . . . . . 6 (𝑀 + 1) ∈ ℕ0
3422, 33eqeltri 2846 . . . . 5 𝑁 ∈ ℕ0
359eftlcl 15036 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘) ∈ ℂ)
3612, 34, 35sylancl 574 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘) ∈ ℂ)
3729, 31, 36addassd 10262 . . 3 (𝜑 → ((𝐵 + ((𝐴𝑀) / (!‘𝑀))) + Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘)) = (𝐵 + (((𝐴𝑀) / (!‘𝑀)) + Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘))))
3828, 37eqtr4d 2808 . 2 (𝜑 → (𝐵 + Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) = ((𝐵 + ((𝐴𝑀) / (!‘𝑀))) + Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘)))
39 efsep.7 . . 3 (𝜑 → (𝐵 + ((𝐴𝑀) / (!‘𝑀))) = 𝐷)
4039oveq1d 6806 . 2 (𝜑 → ((𝐵 + ((𝐴𝑀) / (!‘𝑀))) + Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘)) = (𝐷 + Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘)))
411, 38, 403eqtrd 2809 1 (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ𝑁)(𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cmpt 4863  dom cdm 5249  cfv 6029  (class class class)co 6791  cc 10134  1c1 10137   + caddc 10139   / cdiv 10884  0cn0 11492  cz 11577  cuz 11886  seqcseq 13001  cexp 13060  !cfa 13257  cli 14416  Σcsu 14617  expce 14991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-pm 8010  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-n0 11493  df-z 11578  df-uz 11887  df-rp 12029  df-ico 12379  df-fz 12527  df-fzo 12667  df-fl 12794  df-seq 13002  df-exp 13061  df-fac 13258  df-hash 13315  df-shft 14008  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-limsup 14403  df-clim 14420  df-rlim 14421  df-sum 14618
This theorem is referenced by:  ef4p  15042  dveflem  23955
  Copyright terms: Public domain W3C validator