MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  effsumlt Structured version   Visualization version   GIF version

Theorem effsumlt 16020
Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
effsumlt.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
effsumlt.2 (𝜑𝐴 ∈ ℝ+)
effsumlt.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
effsumlt (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝑁(𝑛)

Proof of Theorem effsumlt
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12774 . . . . 5 0 = (ℤ‘0)
2 0zd 12480 . . . . 5 (𝜑 → 0 ∈ ℤ)
3 effsumlt.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
43eftval 15983 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
54adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
6 effsumlt.2 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
76rpred 12934 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
8 reeftcl 15981 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
97, 8sylan 580 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
105, 9eqeltrd 2831 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ)
111, 2, 10serfre 13938 . . . 4 (𝜑 → seq0( + , 𝐹):ℕ0⟶ℝ)
12 effsumlt.3 . . . 4 (𝜑𝑁 ∈ ℕ0)
1311, 12ffvelcdmd 7018 . . 3 (𝜑 → (seq0( + , 𝐹)‘𝑁) ∈ ℝ)
14 eqid 2731 . . . 4 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
15 peano2nn0 12421 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1612, 15syl 17 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℕ0)
17 eqidd 2732 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐹𝑘))
18 nn0z 12493 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
19 rpexpcl 13987 . . . . . . 7 ((𝐴 ∈ ℝ+𝑘 ∈ ℤ) → (𝐴𝑘) ∈ ℝ+)
206, 18, 19syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ+)
21 faccl 14190 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2221adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
2322nnrpd 12932 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
2420, 23rpdivcld 12951 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ+)
255, 24eqeltrd 2831 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ+)
267recnd 11140 . . . . 5 (𝜑𝐴 ∈ ℂ)
273efcllem 15984 . . . . 5 (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
2826, 27syl 17 . . . 4 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
291, 14, 16, 17, 25, 28isumrpcl 15750 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘) ∈ ℝ+)
3013, 29ltaddrpd 12967 . 2 (𝜑 → (seq0( + , 𝐹)‘𝑁) < ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
313efval2 15991 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
3226, 31syl 17 . . 3 (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
3310recnd 11140 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
341, 14, 16, 17, 33, 28isumsplit 15747 . . 3 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹𝑘) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
3512nn0cnd 12444 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
36 ax-1cn 11064 . . . . . . . 8 1 ∈ ℂ
37 pncan 11366 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
3835, 36, 37sylancl 586 . . . . . . 7 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
3938oveq2d 7362 . . . . . 6 (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁))
4039sumeq1d 15607 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) = Σ𝑘 ∈ (0...𝑁)(𝐹𝑘))
41 eqidd 2732 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐹𝑘) = (𝐹𝑘))
4212, 1eleqtrdi 2841 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
43 elfznn0 13520 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
4443, 33sylan2 593 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℂ)
4541, 42, 44fsumser 15637 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) = (seq0( + , 𝐹)‘𝑁))
4640, 45eqtrd 2766 . . . 4 (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) = (seq0( + , 𝐹)‘𝑁))
4746oveq1d 7361 . . 3 (𝜑 → (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
4832, 34, 473eqtrd 2770 . 2 (𝜑 → (exp‘𝐴) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
4930, 48breqtrrd 5117 1 (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  cmpt 5170  dom cdm 5614  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cmin 11344   / cdiv 11774  cn 12125  0cn0 12381  cz 12468  cuz 12732  +crp 12890  ...cfz 13407  seqcseq 13908  cexp 13968  !cfa 14180  cli 15391  Σcsu 15593  expce 15968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974
This theorem is referenced by:  efgt1p2  16023  efgt1p  16024
  Copyright terms: Public domain W3C validator