|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > effsumlt | Structured version Visualization version GIF version | ||
| Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) | 
| Ref | Expression | 
|---|---|
| effsumlt.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | 
| effsumlt.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) | 
| effsumlt.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) | 
| Ref | Expression | 
|---|---|
| effsumlt | ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nn0uz 12920 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12625 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 3 | effsumlt.1 | . . . . . . . 8 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
| 4 | 3 | eftval 16112 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) | 
| 5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) | 
| 6 | effsumlt.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 7 | 6 | rpred 13077 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 8 | reeftcl 16110 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) | |
| 9 | 7, 8 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ) | 
| 10 | 5, 9 | eqeltrd 2841 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℝ) | 
| 11 | 1, 2, 10 | serfre 14072 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐹):ℕ0⟶ℝ) | 
| 12 | effsumlt.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 13 | 11, 12 | ffvelcdmd 7105 | . . 3 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) ∈ ℝ) | 
| 14 | eqid 2737 | . . . 4 ⊢ (ℤ≥‘(𝑁 + 1)) = (ℤ≥‘(𝑁 + 1)) | |
| 15 | peano2nn0 12566 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
| 16 | 12, 15 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ∈ ℕ0) | 
| 17 | eqidd 2738 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 18 | nn0z 12638 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ) | |
| 19 | rpexpcl 14121 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑘 ∈ ℤ) → (𝐴↑𝑘) ∈ ℝ+) | |
| 20 | 6, 18, 19 | syl2an 596 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℝ+) | 
| 21 | faccl 14322 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ) | |
| 22 | 21 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ) | 
| 23 | 22 | nnrpd 13075 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+) | 
| 24 | 20, 23 | rpdivcld 13094 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ+) | 
| 25 | 5, 24 | eqeltrd 2841 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℝ+) | 
| 26 | 7 | recnd 11289 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 27 | 3 | efcllem 16113 | . . . . 5 ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ ) | 
| 28 | 26, 27 | syl 17 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) | 
| 29 | 1, 14, 16, 17, 25, 28 | isumrpcl 15879 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘) ∈ ℝ+) | 
| 30 | 13, 29 | ltaddrpd 13110 | . 2 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) | 
| 31 | 3 | efval2 16120 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) | 
| 32 | 26, 31 | syl 17 | . . 3 ⊢ (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) | 
| 33 | 10 | recnd 11289 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) | 
| 34 | 1, 14, 16, 17, 33, 28 | isumsplit 15876 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹‘𝑘) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) | 
| 35 | 12 | nn0cnd 12589 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) | 
| 36 | ax-1cn 11213 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 37 | pncan 11514 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁) | |
| 38 | 35, 36, 37 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) | 
| 39 | 38 | oveq2d 7447 | . . . . . 6 ⊢ (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) | 
| 40 | 39 | sumeq1d 15736 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) = Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘)) | 
| 41 | eqidd 2738 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 42 | 12, 1 | eleqtrdi 2851 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) | 
| 43 | elfznn0 13660 | . . . . . . 7 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
| 44 | 43, 33 | sylan2 593 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐹‘𝑘) ∈ ℂ) | 
| 45 | 41, 42, 44 | fsumser 15766 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘) = (seq0( + , 𝐹)‘𝑁)) | 
| 46 | 40, 45 | eqtrd 2777 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) = (seq0( + , 𝐹)‘𝑁)) | 
| 47 | 46 | oveq1d 7446 | . . 3 ⊢ (𝜑 → (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹‘𝑘) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘)) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) | 
| 48 | 32, 34, 47 | 3eqtrd 2781 | . 2 ⊢ (𝜑 → (exp‘𝐴) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ≥‘(𝑁 + 1))(𝐹‘𝑘))) | 
| 49 | 30, 48 | breqtrrd 5171 | 1 ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ↦ cmpt 5225 dom cdm 5685 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 1c1 11156 + caddc 11158 < clt 11295 − cmin 11492 / cdiv 11920 ℕcn 12266 ℕ0cn0 12526 ℤcz 12613 ℤ≥cuz 12878 ℝ+crp 13034 ...cfz 13547 seqcseq 14042 ↑cexp 14102 !cfa 14312 ⇝ cli 15520 Σcsu 15722 expce 16097 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-ico 13393 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-fac 14313 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 df-ef 16103 | 
| This theorem is referenced by: efgt1p2 16150 efgt1p 16151 | 
| Copyright terms: Public domain | W3C validator |