MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  effsumlt Structured version   Visualization version   GIF version

Theorem effsumlt 16147
Description: The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
effsumlt.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
effsumlt.2 (𝜑𝐴 ∈ ℝ+)
effsumlt.3 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
effsumlt (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴))
Distinct variable group:   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝑁(𝑛)

Proof of Theorem effsumlt
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12920 . . . . 5 0 = (ℤ‘0)
2 0zd 12625 . . . . 5 (𝜑 → 0 ∈ ℤ)
3 effsumlt.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
43eftval 16112 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
54adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
6 effsumlt.2 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
76rpred 13077 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
8 reeftcl 16110 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
97, 8sylan 580 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ)
105, 9eqeltrd 2841 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ)
111, 2, 10serfre 14072 . . . 4 (𝜑 → seq0( + , 𝐹):ℕ0⟶ℝ)
12 effsumlt.3 . . . 4 (𝜑𝑁 ∈ ℕ0)
1311, 12ffvelcdmd 7105 . . 3 (𝜑 → (seq0( + , 𝐹)‘𝑁) ∈ ℝ)
14 eqid 2737 . . . 4 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
15 peano2nn0 12566 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1612, 15syl 17 . . . 4 (𝜑 → (𝑁 + 1) ∈ ℕ0)
17 eqidd 2738 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐹𝑘))
18 nn0z 12638 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
19 rpexpcl 14121 . . . . . . 7 ((𝐴 ∈ ℝ+𝑘 ∈ ℤ) → (𝐴𝑘) ∈ ℝ+)
206, 18, 19syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℝ+)
21 faccl 14322 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2221adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
2322nnrpd 13075 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
2420, 23rpdivcld 13094 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ+)
255, 24eqeltrd 2841 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ+)
267recnd 11289 . . . . 5 (𝜑𝐴 ∈ ℂ)
273efcllem 16113 . . . . 5 (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
2826, 27syl 17 . . . 4 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
291, 14, 16, 17, 25, 28isumrpcl 15879 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘) ∈ ℝ+)
3013, 29ltaddrpd 13110 . 2 (𝜑 → (seq0( + , 𝐹)‘𝑁) < ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
313efval2 16120 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
3226, 31syl 17 . . 3 (𝜑 → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹𝑘))
3310recnd 11289 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
341, 14, 16, 17, 33, 28isumsplit 15876 . . 3 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹𝑘) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
3512nn0cnd 12589 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
36 ax-1cn 11213 . . . . . . . 8 1 ∈ ℂ
37 pncan 11514 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
3835, 36, 37sylancl 586 . . . . . . 7 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
3938oveq2d 7447 . . . . . 6 (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁))
4039sumeq1d 15736 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) = Σ𝑘 ∈ (0...𝑁)(𝐹𝑘))
41 eqidd 2738 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐹𝑘) = (𝐹𝑘))
4212, 1eleqtrdi 2851 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
43 elfznn0 13660 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
4443, 33sylan2 593 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐹𝑘) ∈ ℂ)
4541, 42, 44fsumser 15766 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑁)(𝐹𝑘) = (seq0( + , 𝐹)‘𝑁))
4640, 45eqtrd 2777 . . . 4 (𝜑 → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) = (seq0( + , 𝐹)‘𝑁))
4746oveq1d 7446 . . 3 (𝜑 → (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
4832, 34, 473eqtrd 2781 . 2 (𝜑 → (exp‘𝐴) = ((seq0( + , 𝐹)‘𝑁) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))(𝐹𝑘)))
4930, 48breqtrrd 5171 1 (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  cmpt 5225  dom cdm 5685  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  cuz 12878  +crp 13034  ...cfz 13547  seqcseq 14042  cexp 14102  !cfa 14312  cli 15520  Σcsu 15722  expce 16097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-fac 14313  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103
This theorem is referenced by:  efgt1p2  16150  efgt1p  16151
  Copyright terms: Public domain W3C validator