Step | Hyp | Ref
| Expression |
1 | | cjcl 14744 |
. . 3
⊢ (𝐴 ∈ ℂ →
(∗‘𝐴) ∈
ℂ) |
2 | | eqid 2738 |
. . . 4
⊢ (𝑛 ∈ ℕ0
↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦
(((∗‘𝐴)↑𝑛) / (!‘𝑛))) |
3 | 2 | efcvg 15722 |
. . 3
⊢
((∗‘𝐴)
∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦
(((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴))) |
4 | 1, 3 | syl 17 |
. 2
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴))) |
5 | | nn0uz 12549 |
. . 3
⊢
ℕ0 = (ℤ≥‘0) |
6 | | eqid 2738 |
. . . 4
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
7 | 6 | efcvg 15722 |
. . 3
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴)) |
8 | | seqex 13651 |
. . . 4
⊢ seq0( + ,
(𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ V |
9 | 8 | a1i 11 |
. . 3
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ V) |
10 | | 0zd 12261 |
. . 3
⊢ (𝐴 ∈ ℂ → 0 ∈
ℤ) |
11 | 6 | eftval 15714 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
12 | 11 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
13 | | eftcl 15711 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
14 | 12, 13 | eqeltrd 2839 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
15 | 5, 10, 14 | serf 13679 |
. . . 4
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))):ℕ0⟶ℂ) |
16 | 15 | ffvelrnda 6943 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗) ∈ ℂ) |
17 | | addcl 10884 |
. . . . . 6
⊢ ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑘 + 𝑚) ∈ ℂ) |
18 | 17 | adantl 481 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ (𝑘 ∈ ℂ
∧ 𝑚 ∈ ℂ))
→ (𝑘 + 𝑚) ∈
ℂ) |
19 | | simpl 482 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
20 | | elfznn0 13278 |
. . . . . 6
⊢ (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0) |
21 | 19, 20, 14 | syl2an 595 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
22 | | simpr 484 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ 𝑗 ∈
ℕ0) |
23 | 22, 5 | eleqtrdi 2849 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ 𝑗 ∈
(ℤ≥‘0)) |
24 | | cjadd 14780 |
. . . . . 6
⊢ ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) →
(∗‘(𝑘 + 𝑚)) = ((∗‘𝑘) + (∗‘𝑚))) |
25 | 24 | adantl 481 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ (𝑘 ∈ ℂ
∧ 𝑚 ∈ ℂ))
→ (∗‘(𝑘 +
𝑚)) =
((∗‘𝑘) +
(∗‘𝑚))) |
26 | | expcl 13728 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
27 | | faccl 13925 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
28 | 27 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (!‘𝑘) ∈
ℕ) |
29 | 28 | nncnd 11919 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (!‘𝑘) ∈
ℂ) |
30 | 28 | nnne0d 11953 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (!‘𝑘) ≠
0) |
31 | 26, 29, 30 | cjdivd 14862 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘((𝐴↑𝑘) / (!‘𝑘))) = ((∗‘(𝐴↑𝑘)) / (∗‘(!‘𝑘)))) |
32 | | cjexp 14789 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘(𝐴↑𝑘)) = ((∗‘𝐴)↑𝑘)) |
33 | 28 | nnred 11918 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (!‘𝑘) ∈
ℝ) |
34 | 33 | cjred 14865 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘(!‘𝑘)) = (!‘𝑘)) |
35 | 32, 34 | oveq12d 7273 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((∗‘(𝐴↑𝑘)) / (∗‘(!‘𝑘))) = (((∗‘𝐴)↑𝑘) / (!‘𝑘))) |
36 | 31, 35 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘((𝐴↑𝑘) / (!‘𝑘))) = (((∗‘𝐴)↑𝑘) / (!‘𝑘))) |
37 | 12 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘((𝑛
∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘)) = (∗‘((𝐴↑𝑘) / (!‘𝑘)))) |
38 | 2 | eftval 15714 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) = (((∗‘𝐴)↑𝑘) / (!‘𝑘))) |
39 | 38 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) = (((∗‘𝐴)↑𝑘) / (!‘𝑘))) |
40 | 36, 37, 39 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (∗‘((𝑛
∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘)) = ((𝑛 ∈ ℕ0 ↦
(((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) |
41 | 19, 20, 40 | syl2an 595 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
∧ 𝑘 ∈ (0...𝑗)) →
(∗‘((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘)) = ((𝑛 ∈ ℕ0 ↦
(((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘)) |
42 | 18, 21, 23, 25, 41 | seqhomo 13698 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (∗‘(seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗)) = (seq0( + , (𝑛 ∈ ℕ0 ↦
(((∗‘𝐴)↑𝑛) / (!‘𝑛))))‘𝑗)) |
43 | 42 | eqcomd 2744 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0)
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛))))‘𝑗) = (∗‘(seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘𝑗))) |
44 | 5, 7, 9, 10, 16, 43 | climcj 15242 |
. 2
⊢ (𝐴 ∈ ℂ → seq0( + ,
(𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (∗‘(exp‘𝐴))) |
45 | | climuni 15189 |
. 2
⊢ ((seq0( +
, (𝑛 ∈
ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴)) ∧ seq0( + , (𝑛 ∈ ℕ0
↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (∗‘(exp‘𝐴))) →
(exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴))) |
46 | 4, 44, 45 | syl2anc 583 |
1
⊢ (𝐴 ∈ ℂ →
(exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴))) |