MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcj Structured version   Visualization version   GIF version

Theorem efcj 16058
Description: The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
efcj (𝐴 ∈ ℂ → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴)))

Proof of Theorem efcj
Dummy variables 𝑗 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cjcl 15071 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
2 eqid 2729 . . . 4 (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))
32efcvg 16051 . . 3 ((∗‘𝐴) ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴)))
41, 3syl 17 . 2 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴)))
5 nn0uz 12835 . . 3 0 = (ℤ‘0)
6 eqid 2729 . . . 4 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
76efcvg 16051 . . 3 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴))
8 seqex 13968 . . . 4 seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ V
98a1i 11 . . 3 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ V)
10 0zd 12541 . . 3 (𝐴 ∈ ℂ → 0 ∈ ℤ)
116eftval 16042 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
1211adantl 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
13 eftcl 16039 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1412, 13eqeltrd 2828 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
155, 10, 14serf 13995 . . . 4 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))):ℕ0⟶ℂ)
1615ffvelcdmda 7056 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗) ∈ ℂ)
17 addcl 11150 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑘 + 𝑚) ∈ ℂ)
1817adantl 481 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑘 + 𝑚) ∈ ℂ)
19 simpl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
20 elfznn0 13581 . . . . . 6 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
2119, 20, 14syl2an 596 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
22 simpr 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
2322, 5eleqtrdi 2838 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
24 cjadd 15107 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (∗‘(𝑘 + 𝑚)) = ((∗‘𝑘) + (∗‘𝑚)))
2524adantl 481 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (∗‘(𝑘 + 𝑚)) = ((∗‘𝑘) + (∗‘𝑚)))
26 expcl 14044 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
27 faccl 14248 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2827adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
2928nncnd 12202 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
3028nnne0d 12236 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ≠ 0)
3126, 29, 30cjdivd 15189 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝐴𝑘) / (!‘𝑘))) = ((∗‘(𝐴𝑘)) / (∗‘(!‘𝑘))))
32 cjexp 15116 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘))
3328nnred 12201 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
3433cjred 15192 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(!‘𝑘)) = (!‘𝑘))
3532, 34oveq12d 7405 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘(𝐴𝑘)) / (∗‘(!‘𝑘))) = (((∗‘𝐴)↑𝑘) / (!‘𝑘)))
3631, 35eqtrd 2764 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝐴𝑘) / (!‘𝑘))) = (((∗‘𝐴)↑𝑘) / (!‘𝑘)))
3712fveq2d 6862 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘)) = (∗‘((𝐴𝑘) / (!‘𝑘))))
382eftval 16042 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) = (((∗‘𝐴)↑𝑘) / (!‘𝑘)))
3938adantl 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) = (((∗‘𝐴)↑𝑘) / (!‘𝑘)))
4036, 37, 393eqtr4d 2774 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘)) = ((𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))
4119, 20, 40syl2an 596 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → (∗‘((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘)) = ((𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))
4218, 21, 23, 25, 41seqhomo 14014 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (∗‘(seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛))))‘𝑗))
4342eqcomd 2735 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛))))‘𝑗) = (∗‘(seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗)))
445, 7, 9, 10, 16, 43climcj 15571 . 2 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (∗‘(exp‘𝐴)))
45 climuni 15518 . 2 ((seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴)) ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (∗‘(exp‘𝐴))) → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴)))
464, 44, 45syl2anc 584 1 (𝐴 ∈ ℂ → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068   + caddc 11071   / cdiv 11835  cn 12186  0cn0 12442  cuz 12793  ...cfz 13468  seqcseq 13966  cexp 14026  !cfa 14238  ccj 15062  cli 15450  expce 16027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033
This theorem is referenced by:  resinval  16103  recosval  16104  logcj  26515  cosargd  26517
  Copyright terms: Public domain W3C validator