MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efcj Structured version   Visualization version   GIF version

Theorem efcj 15437
Description: The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
Assertion
Ref Expression
efcj (𝐴 ∈ ℂ → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴)))

Proof of Theorem efcj
Dummy variables 𝑗 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cjcl 14456 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
2 eqid 2819 . . . 4 (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))
32efcvg 15430 . . 3 ((∗‘𝐴) ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴)))
41, 3syl 17 . 2 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴)))
5 nn0uz 12272 . . 3 0 = (ℤ‘0)
6 eqid 2819 . . . 4 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
76efcvg 15430 . . 3 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))) ⇝ (exp‘𝐴))
8 seqex 13363 . . . 4 seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ V
98a1i 11 . . 3 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ V)
10 0zd 11985 . . 3 (𝐴 ∈ ℂ → 0 ∈ ℤ)
116eftval 15422 . . . . . . 7 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
1211adantl 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
13 eftcl 15419 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1412, 13eqeltrd 2911 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
155, 10, 14serf 13390 . . . 4 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))):ℕ0⟶ℂ)
1615ffvelrnda 6844 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗) ∈ ℂ)
17 addcl 10611 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑘 + 𝑚) ∈ ℂ)
1817adantl 484 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑘 + 𝑚) ∈ ℂ)
19 simpl 485 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
20 elfznn0 12992 . . . . . 6 (𝑘 ∈ (0...𝑗) → 𝑘 ∈ ℕ0)
2119, 20, 14syl2an 597 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
22 simpr 487 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
2322, 5eleqtrdi 2921 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
24 cjadd 14492 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (∗‘(𝑘 + 𝑚)) = ((∗‘𝑘) + (∗‘𝑚)))
2524adantl 484 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (∗‘(𝑘 + 𝑚)) = ((∗‘𝑘) + (∗‘𝑚)))
26 expcl 13439 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
27 faccl 13635 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
2827adantl 484 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
2928nncnd 11646 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
3028nnne0d 11679 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ≠ 0)
3126, 29, 30cjdivd 14574 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝐴𝑘) / (!‘𝑘))) = ((∗‘(𝐴𝑘)) / (∗‘(!‘𝑘))))
32 cjexp 14501 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(𝐴𝑘)) = ((∗‘𝐴)↑𝑘))
3328nnred 11645 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
3433cjred 14577 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘(!‘𝑘)) = (!‘𝑘))
3532, 34oveq12d 7166 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((∗‘(𝐴𝑘)) / (∗‘(!‘𝑘))) = (((∗‘𝐴)↑𝑘) / (!‘𝑘)))
3631, 35eqtrd 2854 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝐴𝑘) / (!‘𝑘))) = (((∗‘𝐴)↑𝑘) / (!‘𝑘)))
3712fveq2d 6667 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘)) = (∗‘((𝐴𝑘) / (!‘𝑘))))
382eftval 15422 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) = (((∗‘𝐴)↑𝑘) / (!‘𝑘)))
3938adantl 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘) = (((∗‘𝐴)↑𝑘) / (!‘𝑘)))
4036, 37, 393eqtr4d 2864 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (∗‘((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘)) = ((𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))
4119, 20, 40syl2an 597 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑗)) → (∗‘((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘)) = ((𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑘))
4218, 21, 23, 25, 41seqhomo 13409 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (∗‘(seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛))))‘𝑗))
4342eqcomd 2825 . . 3 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛))))‘𝑗) = (∗‘(seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘𝑗)))
445, 7, 9, 10, 16, 43climcj 14953 . 2 (𝐴 ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (∗‘(exp‘𝐴)))
45 climuni 14901 . 2 ((seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (exp‘(∗‘𝐴)) ∧ seq0( + , (𝑛 ∈ ℕ0 ↦ (((∗‘𝐴)↑𝑛) / (!‘𝑛)))) ⇝ (∗‘(exp‘𝐴))) → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴)))
464, 44, 45syl2anc 586 1 (𝐴 ∈ ℂ → (exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  Vcvv 3493   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7148  cc 10527  0cc0 10529   + caddc 10532   / cdiv 11289  cn 11630  0cn0 11889  cuz 12235  ...cfz 12884  seqcseq 13361  cexp 13421  !cfa 13625  ccj 14447  cli 14833  expce 15407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ico 12736  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-fac 13626  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413
This theorem is referenced by:  resinval  15480  recosval  15481  logcj  25181  cosargd  25183
  Copyright terms: Public domain W3C validator