MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbl Structured version   Visualization version   GIF version

Theorem elbl 22413
Description: Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
elbl ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))

Proof of Theorem elbl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 blval 22411 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
21eleq2d 2836 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝐴 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}))
3 oveq2 6801 . . . 4 (𝑥 = 𝐴 → (𝑃𝐷𝑥) = (𝑃𝐷𝐴))
43breq1d 4796 . . 3 (𝑥 = 𝐴 → ((𝑃𝐷𝑥) < 𝑅 ↔ (𝑃𝐷𝐴) < 𝑅))
54elrab 3515 . 2 (𝐴 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))
62, 5syl6bb 276 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  {crab 3065   class class class wbr 4786  cfv 6031  (class class class)co 6793  *cxr 10275   < clt 10276  ∞Metcxmt 19946  ballcbl 19948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-map 8011  df-xr 10280  df-psmet 19953  df-xmet 19954  df-bl 19956
This theorem is referenced by:  elbl2  22415  xblpnf  22421  bldisj  22423  blgt0  22424  xblss2  22427  blhalf  22430  xblcntr  22436  xbln0  22439  blin  22446  blss  22450  blres  22456  imasf1obl  22513  prdsbl  22516  blcls  22531  metcnp  22566  dscopn  22598  cnbl0  22797  bl2ioo  22815  blcvx  22821  xrsmopn  22835  recld2  22837  cnheibor  22974  nmhmcn  23139  lmmbr2  23276  iscau2  23294  dvlip2  23978  psercn  24400  abelth  24415  logtayl  24627  logtayl2  24629  poimirlem29  33771  heicant  33777  iooabslt  40242  limcrecl  40379  islpcn  40389  qndenserrnbllem  41031
  Copyright terms: Public domain W3C validator