MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbl Structured version   Visualization version   GIF version

Theorem elbl 24419
Description: Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
elbl ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))

Proof of Theorem elbl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 blval 24417 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
21eleq2d 2830 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝐴 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}))
3 oveq2 7456 . . . 4 (𝑥 = 𝐴 → (𝑃𝐷𝑥) = (𝑃𝐷𝐴))
43breq1d 5176 . . 3 (𝑥 = 𝐴 → ((𝑃𝐷𝑥) < 𝑅 ↔ (𝑃𝐷𝐴) < 𝑅))
54elrab 3708 . 2 (𝐴 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))
62, 5bitrdi 287 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  cfv 6573  (class class class)co 7448  *cxr 11323   < clt 11324  ∞Metcxmet 21372  ballcbl 21374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-xr 11328  df-psmet 21379  df-xmet 21380  df-bl 21382
This theorem is referenced by:  elbl2  24421  xblpnf  24427  bldisj  24429  blgt0  24430  xblss2  24433  blhalf  24436  xblcntr  24442  xbln0  24445  blin  24452  blss  24456  blres  24462  imasf1obl  24522  prdsbl  24525  blcls  24540  metcnp  24575  dscopn  24607  cnbl0  24815  bl2ioo  24833  blcvx  24839  xrsmopn  24853  recld2  24855  cnheibor  25006  nmhmcn  25172  lmmbr2  25312  iscau2  25330  dvlip2  26054  psercn  26488  abelth  26503  logtayl  26720  logtayl2  26722  poimirlem29  37609  heicant  37615  iooabslt  45417  limcrecl  45550  islpcn  45560  qndenserrnbllem  46215
  Copyright terms: Public domain W3C validator