![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elbl | Structured version Visualization version GIF version |
Description: Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
elbl | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blval 24417 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) | |
2 | 1 | eleq2d 2830 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝐴 ∈ {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})) |
3 | oveq2 7456 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑃𝐷𝑥) = (𝑃𝐷𝐴)) | |
4 | 3 | breq1d 5176 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑃𝐷𝑥) < 𝑅 ↔ (𝑃𝐷𝐴) < 𝑅)) |
5 | 4 | elrab 3708 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)) |
6 | 2, 5 | bitrdi 287 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℝ*cxr 11323 < clt 11324 ∞Metcxmet 21372 ballcbl 21374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-xr 11328 df-psmet 21379 df-xmet 21380 df-bl 21382 |
This theorem is referenced by: elbl2 24421 xblpnf 24427 bldisj 24429 blgt0 24430 xblss2 24433 blhalf 24436 xblcntr 24442 xbln0 24445 blin 24452 blss 24456 blres 24462 imasf1obl 24522 prdsbl 24525 blcls 24540 metcnp 24575 dscopn 24607 cnbl0 24815 bl2ioo 24833 blcvx 24839 xrsmopn 24853 recld2 24855 cnheibor 25006 nmhmcn 25172 lmmbr2 25312 iscau2 25330 dvlip2 26054 psercn 26488 abelth 26503 logtayl 26720 logtayl2 26722 poimirlem29 37609 heicant 37615 iooabslt 45417 limcrecl 45550 islpcn 45560 qndenserrnbllem 46215 |
Copyright terms: Public domain | W3C validator |