| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elbl | Structured version Visualization version GIF version | ||
| Description: Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| Ref | Expression |
|---|---|
| elbl | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blval 24342 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) | |
| 2 | 1 | eleq2d 2819 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝐴 ∈ {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})) |
| 3 | oveq2 7421 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑃𝐷𝑥) = (𝑃𝐷𝐴)) | |
| 4 | 3 | breq1d 5133 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑃𝐷𝑥) < 𝑅 ↔ (𝑃𝐷𝐴) < 𝑅)) |
| 5 | 4 | elrab 3675 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)) |
| 6 | 2, 5 | bitrdi 287 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {crab 3419 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 ℝ*cxr 11276 < clt 11277 ∞Metcxmet 21312 ballcbl 21314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-map 8850 df-xr 11281 df-psmet 21319 df-xmet 21320 df-bl 21322 |
| This theorem is referenced by: elbl2 24346 xblpnf 24352 bldisj 24354 blgt0 24355 xblss2 24358 blhalf 24361 xblcntr 24367 xbln0 24370 blin 24377 blss 24381 blres 24387 imasf1obl 24446 prdsbl 24449 blcls 24464 metcnp 24499 dscopn 24531 cnbl0 24731 bl2ioo 24750 blcvx 24756 xrsmopn 24771 recld2 24773 cnheibor 24924 nmhmcn 25090 lmmbr2 25230 iscau2 25248 dvlip2 25971 psercn 26407 abelth 26422 logtayl 26639 logtayl2 26641 poimirlem29 37631 heicant 37637 iooabslt 45484 limcrecl 45616 islpcn 45626 qndenserrnbllem 46281 |
| Copyright terms: Public domain | W3C validator |