![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elbl | Structured version Visualization version GIF version |
Description: Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
elbl | β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π΄ β (π(ballβπ·)π ) β (π΄ β π β§ (ππ·π΄) < π ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blval 23883 | . . 3 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π(ballβπ·)π ) = {π₯ β π β£ (ππ·π₯) < π }) | |
2 | 1 | eleq2d 2819 | . 2 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π΄ β (π(ballβπ·)π ) β π΄ β {π₯ β π β£ (ππ·π₯) < π })) |
3 | oveq2 7413 | . . . 4 β’ (π₯ = π΄ β (ππ·π₯) = (ππ·π΄)) | |
4 | 3 | breq1d 5157 | . . 3 β’ (π₯ = π΄ β ((ππ·π₯) < π β (ππ·π΄) < π )) |
5 | 4 | elrab 3682 | . 2 β’ (π΄ β {π₯ β π β£ (ππ·π₯) < π } β (π΄ β π β§ (ππ·π΄) < π )) |
6 | 2, 5 | bitrdi 286 | 1 β’ ((π· β (βMetβπ) β§ π β π β§ π β β*) β (π΄ β (π(ballβπ·)π ) β (π΄ β π β§ (ππ·π΄) < π ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 {crab 3432 class class class wbr 5147 βcfv 6540 (class class class)co 7405 β*cxr 11243 < clt 11244 βMetcxmet 20921 ballcbl 20923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-map 8818 df-xr 11248 df-psmet 20928 df-xmet 20929 df-bl 20931 |
This theorem is referenced by: elbl2 23887 xblpnf 23893 bldisj 23895 blgt0 23896 xblss2 23899 blhalf 23902 xblcntr 23908 xbln0 23911 blin 23918 blss 23922 blres 23928 imasf1obl 23988 prdsbl 23991 blcls 24006 metcnp 24041 dscopn 24073 cnbl0 24281 bl2ioo 24299 blcvx 24305 xrsmopn 24319 recld2 24321 cnheibor 24462 nmhmcn 24627 lmmbr2 24767 iscau2 24785 dvlip2 25503 psercn 25929 abelth 25944 logtayl 26159 logtayl2 26161 poimirlem29 36505 heicant 36511 iooabslt 44198 limcrecl 44331 islpcn 44341 qndenserrnbllem 44996 |
Copyright terms: Public domain | W3C validator |