![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfz4 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfz4 | ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝐾 ∈ (𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2 12625 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
2 | 1 | biimpri 220 | 1 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝐾 ∈ (𝑀...𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 ∈ wcel 2166 class class class wbr 4872 (class class class)co 6904 ≤ cle 10391 ℤcz 11703 ...cfz 12618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-fv 6130 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-1st 7427 df-2nd 7428 df-neg 10587 df-z 11704 df-fz 12619 |
This theorem is referenced by: 4bc2eq6 13408 isprm7 15790 axlowdimlem6 26245 oddpwdc 30960 ballotlemsdom 31118 ballotlemsel1i 31119 ballotlemsima 31122 ballotlemfrcn0 31136 fsum2dsub 31233 circlemeth 31266 binomcxplemnn0 39387 stoweidlem20 41030 |
Copyright terms: Public domain | W3C validator |