![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4bc2eq6 | Structured version Visualization version GIF version |
Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
Ref | Expression |
---|---|
4bc2eq6 | ⊢ (4C2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12568 | . . . . 5 ⊢ 0 ∈ ℤ | |
2 | 4z 12595 | . . . . 5 ⊢ 4 ∈ ℤ | |
3 | 2z 12593 | . . . . 5 ⊢ 2 ∈ ℤ | |
4 | 1, 2, 3 | 3pm3.2i 1339 | . . . 4 ⊢ (0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) |
5 | 0le2 12313 | . . . . 5 ⊢ 0 ≤ 2 | |
6 | 2re 12285 | . . . . . 6 ⊢ 2 ∈ ℝ | |
7 | 4re 12295 | . . . . . 6 ⊢ 4 ∈ ℝ | |
8 | 2lt4 12386 | . . . . . 6 ⊢ 2 < 4 | |
9 | 6, 7, 8 | ltleii 11336 | . . . . 5 ⊢ 2 ≤ 4 |
10 | 5, 9 | pm3.2i 471 | . . . 4 ⊢ (0 ≤ 2 ∧ 2 ≤ 4) |
11 | elfz4 13493 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≤ 2 ∧ 2 ≤ 4)) → 2 ∈ (0...4)) | |
12 | 4, 10, 11 | mp2an 690 | . . 3 ⊢ 2 ∈ (0...4) |
13 | bcval2 14264 | . . 3 ⊢ (2 ∈ (0...4) → (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2)))) | |
14 | 12, 13 | ax-mp 5 | . 2 ⊢ (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2))) |
15 | 3nn0 12489 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
16 | facp1 14237 | . . . . . 6 ⊢ (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1))) | |
17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (!‘(3 + 1)) = ((!‘3) · (3 + 1)) |
18 | df-4 12276 | . . . . . 6 ⊢ 4 = (3 + 1) | |
19 | 18 | fveq2i 6894 | . . . . 5 ⊢ (!‘4) = (!‘(3 + 1)) |
20 | 18 | oveq2i 7419 | . . . . 5 ⊢ ((!‘3) · 4) = ((!‘3) · (3 + 1)) |
21 | 17, 19, 20 | 3eqtr4i 2770 | . . . 4 ⊢ (!‘4) = ((!‘3) · 4) |
22 | 4cn 12296 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
23 | 2cn 12286 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
24 | 2p2e4 12346 | . . . . . . . . 9 ⊢ (2 + 2) = 4 | |
25 | 22, 23, 23, 24 | subaddrii 11548 | . . . . . . . 8 ⊢ (4 − 2) = 2 |
26 | 25 | fveq2i 6894 | . . . . . . 7 ⊢ (!‘(4 − 2)) = (!‘2) |
27 | fac2 14238 | . . . . . . 7 ⊢ (!‘2) = 2 | |
28 | 26, 27 | eqtri 2760 | . . . . . 6 ⊢ (!‘(4 − 2)) = 2 |
29 | 28, 27 | oveq12i 7420 | . . . . 5 ⊢ ((!‘(4 − 2)) · (!‘2)) = (2 · 2) |
30 | 2t2e4 12375 | . . . . 5 ⊢ (2 · 2) = 4 | |
31 | 29, 30 | eqtri 2760 | . . . 4 ⊢ ((!‘(4 − 2)) · (!‘2)) = 4 |
32 | 21, 31 | oveq12i 7420 | . . 3 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = (((!‘3) · 4) / 4) |
33 | faccl 14242 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → (!‘3) ∈ ℕ) | |
34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ (!‘3) ∈ ℕ |
35 | 34 | nncni 12221 | . . . . 5 ⊢ (!‘3) ∈ ℂ |
36 | 4ne0 12319 | . . . . 5 ⊢ 4 ≠ 0 | |
37 | 35, 22, 36 | divcan4i 11960 | . . . 4 ⊢ (((!‘3) · 4) / 4) = (!‘3) |
38 | fac3 14239 | . . . 4 ⊢ (!‘3) = 6 | |
39 | 37, 38 | eqtri 2760 | . . 3 ⊢ (((!‘3) · 4) / 4) = 6 |
40 | 32, 39 | eqtri 2760 | . 2 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = 6 |
41 | 14, 40 | eqtri 2760 | 1 ⊢ (4C2) = 6 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6543 (class class class)co 7408 0cc0 11109 1c1 11110 + caddc 11112 · cmul 11114 ≤ cle 11248 − cmin 11443 / cdiv 11870 ℕcn 12211 2c2 12266 3c3 12267 4c4 12268 6c6 12270 ℕ0cn0 12471 ℤcz 12557 ...cfz 13483 !cfa 14232 Ccbc 14261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-seq 13966 df-fac 14233 df-bc 14262 |
This theorem is referenced by: bpoly4 16002 ex-bc 29702 5bc2eq10 40953 |
Copyright terms: Public domain | W3C validator |