| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4bc2eq6 | Structured version Visualization version GIF version | ||
| Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
| Ref | Expression |
|---|---|
| 4bc2eq6 | ⊢ (4C2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12482 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 2 | 4z 12509 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 3 | 2z 12507 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 4 | 1, 2, 3 | 3pm3.2i 1340 | . . . 4 ⊢ (0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) |
| 5 | 0le2 12230 | . . . . 5 ⊢ 0 ≤ 2 | |
| 6 | 2re 12202 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 7 | 4re 12212 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 8 | 2lt4 12298 | . . . . . 6 ⊢ 2 < 4 | |
| 9 | 6, 7, 8 | ltleii 11239 | . . . . 5 ⊢ 2 ≤ 4 |
| 10 | 5, 9 | pm3.2i 470 | . . . 4 ⊢ (0 ≤ 2 ∧ 2 ≤ 4) |
| 11 | elfz4 13420 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≤ 2 ∧ 2 ≤ 4)) → 2 ∈ (0...4)) | |
| 12 | 4, 10, 11 | mp2an 692 | . . 3 ⊢ 2 ∈ (0...4) |
| 13 | bcval2 14212 | . . 3 ⊢ (2 ∈ (0...4) → (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2)))) | |
| 14 | 12, 13 | ax-mp 5 | . 2 ⊢ (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2))) |
| 15 | 3nn0 12402 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 16 | facp1 14185 | . . . . . 6 ⊢ (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1))) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (!‘(3 + 1)) = ((!‘3) · (3 + 1)) |
| 18 | df-4 12193 | . . . . . 6 ⊢ 4 = (3 + 1) | |
| 19 | 18 | fveq2i 6825 | . . . . 5 ⊢ (!‘4) = (!‘(3 + 1)) |
| 20 | 18 | oveq2i 7360 | . . . . 5 ⊢ ((!‘3) · 4) = ((!‘3) · (3 + 1)) |
| 21 | 17, 19, 20 | 3eqtr4i 2762 | . . . 4 ⊢ (!‘4) = ((!‘3) · 4) |
| 22 | 4cn 12213 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 23 | 2cn 12203 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 24 | 2p2e4 12258 | . . . . . . . . 9 ⊢ (2 + 2) = 4 | |
| 25 | 22, 23, 23, 24 | subaddrii 11453 | . . . . . . . 8 ⊢ (4 − 2) = 2 |
| 26 | 25 | fveq2i 6825 | . . . . . . 7 ⊢ (!‘(4 − 2)) = (!‘2) |
| 27 | fac2 14186 | . . . . . . 7 ⊢ (!‘2) = 2 | |
| 28 | 26, 27 | eqtri 2752 | . . . . . 6 ⊢ (!‘(4 − 2)) = 2 |
| 29 | 28, 27 | oveq12i 7361 | . . . . 5 ⊢ ((!‘(4 − 2)) · (!‘2)) = (2 · 2) |
| 30 | 2t2e4 12287 | . . . . 5 ⊢ (2 · 2) = 4 | |
| 31 | 29, 30 | eqtri 2752 | . . . 4 ⊢ ((!‘(4 − 2)) · (!‘2)) = 4 |
| 32 | 21, 31 | oveq12i 7361 | . . 3 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = (((!‘3) · 4) / 4) |
| 33 | faccl 14190 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → (!‘3) ∈ ℕ) | |
| 34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ (!‘3) ∈ ℕ |
| 35 | 34 | nncni 12138 | . . . . 5 ⊢ (!‘3) ∈ ℂ |
| 36 | 4ne0 12236 | . . . . 5 ⊢ 4 ≠ 0 | |
| 37 | 35, 22, 36 | divcan4i 11871 | . . . 4 ⊢ (((!‘3) · 4) / 4) = (!‘3) |
| 38 | fac3 14187 | . . . 4 ⊢ (!‘3) = 6 | |
| 39 | 37, 38 | eqtri 2752 | . . 3 ⊢ (((!‘3) · 4) / 4) = 6 |
| 40 | 32, 39 | eqtri 2752 | . 2 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = 6 |
| 41 | 14, 40 | eqtri 2752 | 1 ⊢ (4C2) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 ≤ cle 11150 − cmin 11347 / cdiv 11777 ℕcn 12128 2c2 12183 3c3 12184 4c4 12185 6c6 12187 ℕ0cn0 12384 ℤcz 12471 ...cfz 13410 !cfa 14180 Ccbc 14209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-seq 13909 df-fac 14181 df-bc 14210 |
| This theorem is referenced by: bpoly4 15966 ex-bc 30396 5bc2eq10 42119 |
| Copyright terms: Public domain | W3C validator |