Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 4bc2eq6 | Structured version Visualization version GIF version |
Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
Ref | Expression |
---|---|
4bc2eq6 | ⊢ (4C2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12403 | . . . . 5 ⊢ 0 ∈ ℤ | |
2 | 4z 12427 | . . . . 5 ⊢ 4 ∈ ℤ | |
3 | 2z 12425 | . . . . 5 ⊢ 2 ∈ ℤ | |
4 | 1, 2, 3 | 3pm3.2i 1338 | . . . 4 ⊢ (0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) |
5 | 0le2 12148 | . . . . 5 ⊢ 0 ≤ 2 | |
6 | 2re 12120 | . . . . . 6 ⊢ 2 ∈ ℝ | |
7 | 4re 12130 | . . . . . 6 ⊢ 4 ∈ ℝ | |
8 | 2lt4 12221 | . . . . . 6 ⊢ 2 < 4 | |
9 | 6, 7, 8 | ltleii 11171 | . . . . 5 ⊢ 2 ≤ 4 |
10 | 5, 9 | pm3.2i 471 | . . . 4 ⊢ (0 ≤ 2 ∧ 2 ≤ 4) |
11 | elfz4 13322 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≤ 2 ∧ 2 ≤ 4)) → 2 ∈ (0...4)) | |
12 | 4, 10, 11 | mp2an 689 | . . 3 ⊢ 2 ∈ (0...4) |
13 | bcval2 14092 | . . 3 ⊢ (2 ∈ (0...4) → (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2)))) | |
14 | 12, 13 | ax-mp 5 | . 2 ⊢ (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2))) |
15 | 3nn0 12324 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
16 | facp1 14065 | . . . . . 6 ⊢ (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1))) | |
17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (!‘(3 + 1)) = ((!‘3) · (3 + 1)) |
18 | df-4 12111 | . . . . . 6 ⊢ 4 = (3 + 1) | |
19 | 18 | fveq2i 6814 | . . . . 5 ⊢ (!‘4) = (!‘(3 + 1)) |
20 | 18 | oveq2i 7326 | . . . . 5 ⊢ ((!‘3) · 4) = ((!‘3) · (3 + 1)) |
21 | 17, 19, 20 | 3eqtr4i 2775 | . . . 4 ⊢ (!‘4) = ((!‘3) · 4) |
22 | 4cn 12131 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
23 | 2cn 12121 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
24 | 2p2e4 12181 | . . . . . . . . 9 ⊢ (2 + 2) = 4 | |
25 | 22, 23, 23, 24 | subaddrii 11383 | . . . . . . . 8 ⊢ (4 − 2) = 2 |
26 | 25 | fveq2i 6814 | . . . . . . 7 ⊢ (!‘(4 − 2)) = (!‘2) |
27 | fac2 14066 | . . . . . . 7 ⊢ (!‘2) = 2 | |
28 | 26, 27 | eqtri 2765 | . . . . . 6 ⊢ (!‘(4 − 2)) = 2 |
29 | 28, 27 | oveq12i 7327 | . . . . 5 ⊢ ((!‘(4 − 2)) · (!‘2)) = (2 · 2) |
30 | 2t2e4 12210 | . . . . 5 ⊢ (2 · 2) = 4 | |
31 | 29, 30 | eqtri 2765 | . . . 4 ⊢ ((!‘(4 − 2)) · (!‘2)) = 4 |
32 | 21, 31 | oveq12i 7327 | . . 3 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = (((!‘3) · 4) / 4) |
33 | faccl 14070 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → (!‘3) ∈ ℕ) | |
34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ (!‘3) ∈ ℕ |
35 | 34 | nncni 12056 | . . . . 5 ⊢ (!‘3) ∈ ℂ |
36 | 4ne0 12154 | . . . . 5 ⊢ 4 ≠ 0 | |
37 | 35, 22, 36 | divcan4i 11795 | . . . 4 ⊢ (((!‘3) · 4) / 4) = (!‘3) |
38 | fac3 14067 | . . . 4 ⊢ (!‘3) = 6 | |
39 | 37, 38 | eqtri 2765 | . . 3 ⊢ (((!‘3) · 4) / 4) = 6 |
40 | 32, 39 | eqtri 2765 | . 2 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = 6 |
41 | 14, 40 | eqtri 2765 | 1 ⊢ (4C2) = 6 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5087 ‘cfv 6465 (class class class)co 7315 0cc0 10944 1c1 10945 + caddc 10947 · cmul 10949 ≤ cle 11083 − cmin 11278 / cdiv 11705 ℕcn 12046 2c2 12101 3c3 12102 4c4 12103 6c6 12105 ℕ0cn0 12306 ℤcz 12392 ...cfz 13312 !cfa 14060 Ccbc 14089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-n0 12307 df-z 12393 df-uz 12656 df-fz 13313 df-seq 13795 df-fac 14061 df-bc 14090 |
This theorem is referenced by: bpoly4 15841 ex-bc 28925 5bc2eq10 40306 |
Copyright terms: Public domain | W3C validator |