| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4bc2eq6 | Structured version Visualization version GIF version | ||
| Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
| Ref | Expression |
|---|---|
| 4bc2eq6 | ⊢ (4C2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12479 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 2 | 4z 12506 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 3 | 2z 12504 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 4 | 1, 2, 3 | 3pm3.2i 1340 | . . . 4 ⊢ (0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) |
| 5 | 0le2 12227 | . . . . 5 ⊢ 0 ≤ 2 | |
| 6 | 2re 12199 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 7 | 4re 12209 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 8 | 2lt4 12295 | . . . . . 6 ⊢ 2 < 4 | |
| 9 | 6, 7, 8 | ltleii 11236 | . . . . 5 ⊢ 2 ≤ 4 |
| 10 | 5, 9 | pm3.2i 470 | . . . 4 ⊢ (0 ≤ 2 ∧ 2 ≤ 4) |
| 11 | elfz4 13417 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≤ 2 ∧ 2 ≤ 4)) → 2 ∈ (0...4)) | |
| 12 | 4, 10, 11 | mp2an 692 | . . 3 ⊢ 2 ∈ (0...4) |
| 13 | bcval2 14212 | . . 3 ⊢ (2 ∈ (0...4) → (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2)))) | |
| 14 | 12, 13 | ax-mp 5 | . 2 ⊢ (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2))) |
| 15 | 3nn0 12399 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 16 | facp1 14185 | . . . . . 6 ⊢ (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1))) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (!‘(3 + 1)) = ((!‘3) · (3 + 1)) |
| 18 | df-4 12190 | . . . . . 6 ⊢ 4 = (3 + 1) | |
| 19 | 18 | fveq2i 6825 | . . . . 5 ⊢ (!‘4) = (!‘(3 + 1)) |
| 20 | 18 | oveq2i 7357 | . . . . 5 ⊢ ((!‘3) · 4) = ((!‘3) · (3 + 1)) |
| 21 | 17, 19, 20 | 3eqtr4i 2764 | . . . 4 ⊢ (!‘4) = ((!‘3) · 4) |
| 22 | 4cn 12210 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 23 | 2cn 12200 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 24 | 2p2e4 12255 | . . . . . . . . 9 ⊢ (2 + 2) = 4 | |
| 25 | 22, 23, 23, 24 | subaddrii 11450 | . . . . . . . 8 ⊢ (4 − 2) = 2 |
| 26 | 25 | fveq2i 6825 | . . . . . . 7 ⊢ (!‘(4 − 2)) = (!‘2) |
| 27 | fac2 14186 | . . . . . . 7 ⊢ (!‘2) = 2 | |
| 28 | 26, 27 | eqtri 2754 | . . . . . 6 ⊢ (!‘(4 − 2)) = 2 |
| 29 | 28, 27 | oveq12i 7358 | . . . . 5 ⊢ ((!‘(4 − 2)) · (!‘2)) = (2 · 2) |
| 30 | 2t2e4 12284 | . . . . 5 ⊢ (2 · 2) = 4 | |
| 31 | 29, 30 | eqtri 2754 | . . . 4 ⊢ ((!‘(4 − 2)) · (!‘2)) = 4 |
| 32 | 21, 31 | oveq12i 7358 | . . 3 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = (((!‘3) · 4) / 4) |
| 33 | faccl 14190 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → (!‘3) ∈ ℕ) | |
| 34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ (!‘3) ∈ ℕ |
| 35 | 34 | nncni 12135 | . . . . 5 ⊢ (!‘3) ∈ ℂ |
| 36 | 4ne0 12233 | . . . . 5 ⊢ 4 ≠ 0 | |
| 37 | 35, 22, 36 | divcan4i 11868 | . . . 4 ⊢ (((!‘3) · 4) / 4) = (!‘3) |
| 38 | fac3 14187 | . . . 4 ⊢ (!‘3) = 6 | |
| 39 | 37, 38 | eqtri 2754 | . . 3 ⊢ (((!‘3) · 4) / 4) = 6 |
| 40 | 32, 39 | eqtri 2754 | . 2 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = 6 |
| 41 | 14, 40 | eqtri 2754 | 1 ⊢ (4C2) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 ≤ cle 11147 − cmin 11344 / cdiv 11774 ℕcn 12125 2c2 12180 3c3 12181 4c4 12182 6c6 12184 ℕ0cn0 12381 ℤcz 12468 ...cfz 13407 !cfa 14180 Ccbc 14209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-seq 13909 df-fac 14181 df-bc 14210 |
| This theorem is referenced by: bpoly4 15966 ex-bc 30432 5bc2eq10 42245 |
| Copyright terms: Public domain | W3C validator |