| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4bc2eq6 | Structured version Visualization version GIF version | ||
| Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
| Ref | Expression |
|---|---|
| 4bc2eq6 | ⊢ (4C2) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12540 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 2 | 4z 12567 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 3 | 2z 12565 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 4 | 1, 2, 3 | 3pm3.2i 1340 | . . . 4 ⊢ (0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) |
| 5 | 0le2 12288 | . . . . 5 ⊢ 0 ≤ 2 | |
| 6 | 2re 12260 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 7 | 4re 12270 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 8 | 2lt4 12356 | . . . . . 6 ⊢ 2 < 4 | |
| 9 | 6, 7, 8 | ltleii 11297 | . . . . 5 ⊢ 2 ≤ 4 |
| 10 | 5, 9 | pm3.2i 470 | . . . 4 ⊢ (0 ≤ 2 ∧ 2 ≤ 4) |
| 11 | elfz4 13478 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≤ 2 ∧ 2 ≤ 4)) → 2 ∈ (0...4)) | |
| 12 | 4, 10, 11 | mp2an 692 | . . 3 ⊢ 2 ∈ (0...4) |
| 13 | bcval2 14270 | . . 3 ⊢ (2 ∈ (0...4) → (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2)))) | |
| 14 | 12, 13 | ax-mp 5 | . 2 ⊢ (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2))) |
| 15 | 3nn0 12460 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 16 | facp1 14243 | . . . . . 6 ⊢ (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1))) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (!‘(3 + 1)) = ((!‘3) · (3 + 1)) |
| 18 | df-4 12251 | . . . . . 6 ⊢ 4 = (3 + 1) | |
| 19 | 18 | fveq2i 6861 | . . . . 5 ⊢ (!‘4) = (!‘(3 + 1)) |
| 20 | 18 | oveq2i 7398 | . . . . 5 ⊢ ((!‘3) · 4) = ((!‘3) · (3 + 1)) |
| 21 | 17, 19, 20 | 3eqtr4i 2762 | . . . 4 ⊢ (!‘4) = ((!‘3) · 4) |
| 22 | 4cn 12271 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
| 23 | 2cn 12261 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 24 | 2p2e4 12316 | . . . . . . . . 9 ⊢ (2 + 2) = 4 | |
| 25 | 22, 23, 23, 24 | subaddrii 11511 | . . . . . . . 8 ⊢ (4 − 2) = 2 |
| 26 | 25 | fveq2i 6861 | . . . . . . 7 ⊢ (!‘(4 − 2)) = (!‘2) |
| 27 | fac2 14244 | . . . . . . 7 ⊢ (!‘2) = 2 | |
| 28 | 26, 27 | eqtri 2752 | . . . . . 6 ⊢ (!‘(4 − 2)) = 2 |
| 29 | 28, 27 | oveq12i 7399 | . . . . 5 ⊢ ((!‘(4 − 2)) · (!‘2)) = (2 · 2) |
| 30 | 2t2e4 12345 | . . . . 5 ⊢ (2 · 2) = 4 | |
| 31 | 29, 30 | eqtri 2752 | . . . 4 ⊢ ((!‘(4 − 2)) · (!‘2)) = 4 |
| 32 | 21, 31 | oveq12i 7399 | . . 3 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = (((!‘3) · 4) / 4) |
| 33 | faccl 14248 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → (!‘3) ∈ ℕ) | |
| 34 | 15, 33 | ax-mp 5 | . . . . . 6 ⊢ (!‘3) ∈ ℕ |
| 35 | 34 | nncni 12196 | . . . . 5 ⊢ (!‘3) ∈ ℂ |
| 36 | 4ne0 12294 | . . . . 5 ⊢ 4 ≠ 0 | |
| 37 | 35, 22, 36 | divcan4i 11929 | . . . 4 ⊢ (((!‘3) · 4) / 4) = (!‘3) |
| 38 | fac3 14245 | . . . 4 ⊢ (!‘3) = 6 | |
| 39 | 37, 38 | eqtri 2752 | . . 3 ⊢ (((!‘3) · 4) / 4) = 6 |
| 40 | 32, 39 | eqtri 2752 | . 2 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = 6 |
| 41 | 14, 40 | eqtri 2752 | 1 ⊢ (4C2) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 ≤ cle 11209 − cmin 11405 / cdiv 11835 ℕcn 12186 2c2 12241 3c3 12242 4c4 12243 6c6 12245 ℕ0cn0 12442 ℤcz 12529 ...cfz 13468 !cfa 14238 Ccbc 14267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 df-fac 14239 df-bc 14268 |
| This theorem is referenced by: bpoly4 16025 ex-bc 30381 5bc2eq10 42130 |
| Copyright terms: Public domain | W3C validator |