| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfz5 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.) |
| Ref | Expression |
|---|---|
| elfz5 | ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 12745 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
| 2 | eluzel2 12740 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 3 | 1, 2 | jca 511 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
| 4 | elfz 13416 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
| 5 | 4 | 3expa 1118 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 6 | 3, 5 | sylan 580 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 7 | eluzle 12748 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝐾) | |
| 8 | 7 | biantrurd 532 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 ≤ 𝑁 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 10 | 6, 9 | bitr4d 282 | 1 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ≤ cle 11150 ℤcz 12471 ℤ≥cuz 12735 ...cfz 13410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-neg 11350 df-z 12472 df-uz 12736 df-fz 13411 |
| This theorem is referenced by: fzsplit2 13452 fznn0sub2 13538 predfz 13556 bcval5 14225 hashf1 14364 seqcoll 14371 limsupgre 15388 isercolllem2 15573 isercoll 15575 fsumcvg3 15636 fsum0diaglem 15683 climcndslem2 15757 mertenslem1 15791 ncoprmlnprm 16639 pcfac 16811 prmreclem2 16829 prmreclem3 16830 prmreclem5 16832 1arith 16839 vdwlem1 16893 vdwlem3 16895 vdwlem10 16902 sylow1lem1 19477 psrbaglefi 21833 ovoliunlem1 25401 ovolicc2lem4 25419 uniioombllem3 25484 mbfi1fseqlem3 25616 plyeq0lem 26113 coeeulem 26127 coeidlem 26140 coeid3 26143 coeeq2 26145 coemulhi 26157 vieta1lem2 26217 birthdaylem2 26860 birthdaylem3 26861 ftalem5 26985 basellem2 26990 basellem3 26991 basellem5 26993 musum 27099 fsumvma2 27123 chpchtsum 27128 lgsne0 27244 lgsquadlem2 27290 rplogsumlem2 27394 dchrisumlem1 27398 dchrisum0lem1 27425 ostth2lem3 27544 eupth2lems 30186 fzsplit3 32745 eulerpartlems 34344 eulerpartlemb 34352 erdszelem7 35190 cvmliftlem7 35284 |
| Copyright terms: Public domain | W3C validator |