MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz5 Structured version   Visualization version   GIF version

Theorem elfz5 13177
Description: Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.)
Assertion
Ref Expression
elfz5 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾𝑁))

Proof of Theorem elfz5
StepHypRef Expression
1 eluzelz 12521 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
2 eluzel2 12516 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2jca 511 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
4 elfz 13174 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
543expa 1116 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
63, 5sylan 579 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
7 eluzle 12524 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
87biantrurd 532 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝐾𝑁 ↔ (𝑀𝐾𝐾𝑁)))
98adantr 480 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾𝑁 ↔ (𝑀𝐾𝐾𝑁)))
106, 9bitr4d 281 1 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cle 10941  cz 12249  cuz 12511  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-neg 11138  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by:  fzsplit2  13210  fznn0sub2  13292  predfz  13310  bcval5  13960  hashf1  14099  seqcoll  14106  limsupgre  15118  isercolllem2  15305  isercoll  15307  fsumcvg3  15369  fsum0diaglem  15416  climcndslem2  15490  mertenslem1  15524  ncoprmlnprm  16360  pcfac  16528  prmreclem2  16546  prmreclem3  16547  prmreclem5  16549  1arith  16556  vdwlem1  16610  vdwlem3  16612  vdwlem10  16619  sylow1lem1  19118  psrbaglefi  21045  psrbaglefiOLD  21046  ovoliunlem1  24571  ovolicc2lem4  24589  uniioombllem3  24654  mbfi1fseqlem3  24787  plyeq0lem  25276  coeeulem  25290  coeidlem  25303  coeid3  25306  coeeq2  25308  coemulhi  25320  vieta1lem2  25376  birthdaylem2  26007  birthdaylem3  26008  ftalem5  26131  basellem2  26136  basellem3  26137  basellem5  26139  musum  26245  fsumvma2  26267  chpchtsum  26272  lgsne0  26388  lgsquadlem2  26434  rplogsumlem2  26538  dchrisumlem1  26542  dchrisum0lem1  26569  ostth2lem3  26688  eupth2lems  28503  fzsplit3  31017  eulerpartlems  32227  eulerpartlemb  32235  erdszelem7  33059  cvmliftlem7  33153
  Copyright terms: Public domain W3C validator