MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz5 Structured version   Visualization version   GIF version

Theorem elfz5 13576
Description: Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.)
Assertion
Ref Expression
elfz5 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾𝑁))

Proof of Theorem elfz5
StepHypRef Expression
1 eluzelz 12913 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
2 eluzel2 12908 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2jca 511 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
4 elfz 13573 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
543expa 1118 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
63, 5sylan 579 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
7 eluzle 12916 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
87biantrurd 532 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝐾𝑁 ↔ (𝑀𝐾𝐾𝑁)))
98adantr 480 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾𝑁 ↔ (𝑀𝐾𝐾𝑁)))
106, 9bitr4d 282 1 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cle 11325  cz 12639  cuz 12903  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-neg 11523  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  fzsplit2  13609  fznn0sub2  13692  predfz  13710  bcval5  14367  hashf1  14506  seqcoll  14513  limsupgre  15527  isercolllem2  15714  isercoll  15716  fsumcvg3  15777  fsum0diaglem  15824  climcndslem2  15898  mertenslem1  15932  ncoprmlnprm  16775  pcfac  16946  prmreclem2  16964  prmreclem3  16965  prmreclem5  16967  1arith  16974  vdwlem1  17028  vdwlem3  17030  vdwlem10  17037  sylow1lem1  19640  psrbaglefi  21969  ovoliunlem1  25556  ovolicc2lem4  25574  uniioombllem3  25639  mbfi1fseqlem3  25772  plyeq0lem  26269  coeeulem  26283  coeidlem  26296  coeid3  26299  coeeq2  26301  coemulhi  26313  vieta1lem2  26371  birthdaylem2  27013  birthdaylem3  27014  ftalem5  27138  basellem2  27143  basellem3  27144  basellem5  27146  musum  27252  fsumvma2  27276  chpchtsum  27281  lgsne0  27397  lgsquadlem2  27443  rplogsumlem2  27547  dchrisumlem1  27551  dchrisum0lem1  27578  ostth2lem3  27697  eupth2lems  30270  fzsplit3  32799  eulerpartlems  34325  eulerpartlemb  34333  erdszelem7  35165  cvmliftlem7  35259
  Copyright terms: Public domain W3C validator