| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfz5 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.) |
| Ref | Expression |
|---|---|
| elfz5 | ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 12782 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
| 2 | eluzel2 12777 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 3 | 1, 2 | jca 511 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
| 4 | elfz 13453 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
| 5 | 4 | 3expa 1118 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 6 | 3, 5 | sylan 580 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 7 | eluzle 12785 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝐾) | |
| 8 | 7 | biantrurd 532 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 ≤ 𝑁 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 10 | 6, 9 | bitr4d 282 | 1 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6500 (class class class)co 7370 ≤ cle 11188 ℤcz 12508 ℤ≥cuz 12772 ...cfz 13447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-cnex 11103 ax-resscn 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-fv 6508 df-ov 7373 df-oprab 7374 df-mpo 7375 df-neg 11387 df-z 12509 df-uz 12773 df-fz 13448 |
| This theorem is referenced by: fzsplit2 13489 fznn0sub2 13575 predfz 13593 bcval5 14262 hashf1 14401 seqcoll 14408 limsupgre 15425 isercolllem2 15610 isercoll 15612 fsumcvg3 15673 fsum0diaglem 15720 climcndslem2 15794 mertenslem1 15828 ncoprmlnprm 16676 pcfac 16848 prmreclem2 16866 prmreclem3 16867 prmreclem5 16869 1arith 16876 vdwlem1 16930 vdwlem3 16932 vdwlem10 16939 sylow1lem1 19514 psrbaglefi 21870 ovoliunlem1 25438 ovolicc2lem4 25456 uniioombllem3 25521 mbfi1fseqlem3 25653 plyeq0lem 26150 coeeulem 26164 coeidlem 26177 coeid3 26180 coeeq2 26182 coemulhi 26194 vieta1lem2 26254 birthdaylem2 26897 birthdaylem3 26898 ftalem5 27022 basellem2 27027 basellem3 27028 basellem5 27030 musum 27136 fsumvma2 27160 chpchtsum 27165 lgsne0 27281 lgsquadlem2 27327 rplogsumlem2 27431 dchrisumlem1 27435 dchrisum0lem1 27462 ostth2lem3 27581 eupth2lems 30219 fzsplit3 32768 eulerpartlems 34346 eulerpartlemb 34354 erdszelem7 35179 cvmliftlem7 35273 |
| Copyright terms: Public domain | W3C validator |