![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfz5 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.) |
Ref | Expression |
---|---|
elfz5 | ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 11940 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
2 | eluzel2 11935 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 1, 2 | jca 508 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
4 | elfz 12586 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
5 | 4 | 3expa 1148 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
6 | 3, 5 | sylan 576 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
7 | eluzle 11943 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝐾) | |
8 | 7 | biantrurd 529 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 ≤ 𝑁 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
9 | 8 | adantr 473 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
10 | 6, 9 | bitr4d 274 | 1 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 class class class wbr 4843 ‘cfv 6101 (class class class)co 6878 ≤ cle 10364 ℤcz 11666 ℤ≥cuz 11930 ...cfz 12580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-cnex 10280 ax-resscn 10281 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-neg 10559 df-z 11667 df-uz 11931 df-fz 12581 |
This theorem is referenced by: fzsplit2 12620 fznn0sub2 12701 predfz 12719 bcval5 13358 hashf1 13490 seqcoll 13497 limsupgre 14553 isercolllem2 14737 isercoll 14739 fsumcvg3 14801 fsum0diaglem 14846 climcndslem2 14920 mertenslem1 14953 ncoprmlnprm 15769 pcfac 15936 prmreclem2 15954 prmreclem3 15955 prmreclem5 15957 1arith 15964 vdwlem1 16018 vdwlem3 16020 vdwlem10 16027 sylow1lem1 18326 psrbaglefi 19695 ovoliunlem1 23610 ovolicc2lem4 23628 uniioombllem3 23693 mbfi1fseqlem3 23825 iblcnlem1 23895 plyeq0lem 24307 coeeulem 24321 coeidlem 24334 coeid3 24337 coeeq2 24339 coemulhi 24351 vieta1lem2 24407 birthdaylem2 25031 birthdaylem3 25032 ftalem5 25155 basellem2 25160 basellem3 25161 basellem5 25163 musum 25269 fsumvma2 25291 chpchtsum 25296 lgsne0 25412 lgsquadlem2 25458 rplogsumlem2 25526 dchrisumlem1 25530 dchrisum0lem1 25557 ostth2lem3 25676 eupth2lems 27583 fzsplit3 30071 eulerpartlems 30938 eulerpartlemb 30946 erdszelem7 31696 cvmliftlem7 31790 |
Copyright terms: Public domain | W3C validator |