MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz5 Structured version   Visualization version   GIF version

Theorem elfz5 13456
Description: Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.)
Assertion
Ref Expression
elfz5 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾𝑁))

Proof of Theorem elfz5
StepHypRef Expression
1 eluzelz 12782 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
2 eluzel2 12777 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2jca 511 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
4 elfz 13453 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
543expa 1118 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
63, 5sylan 580 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
7 eluzle 12785 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
87biantrurd 532 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝐾𝑁 ↔ (𝑀𝐾𝐾𝑁)))
98adantr 480 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾𝑁 ↔ (𝑀𝐾𝐾𝑁)))
106, 9bitr4d 282 1 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5102  cfv 6500  (class class class)co 7370  cle 11188  cz 12508  cuz 12772  ...cfz 13447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-cnex 11103  ax-resscn 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-fv 6508  df-ov 7373  df-oprab 7374  df-mpo 7375  df-neg 11387  df-z 12509  df-uz 12773  df-fz 13448
This theorem is referenced by:  fzsplit2  13489  fznn0sub2  13575  predfz  13593  bcval5  14262  hashf1  14401  seqcoll  14408  limsupgre  15425  isercolllem2  15610  isercoll  15612  fsumcvg3  15673  fsum0diaglem  15720  climcndslem2  15794  mertenslem1  15828  ncoprmlnprm  16676  pcfac  16848  prmreclem2  16866  prmreclem3  16867  prmreclem5  16869  1arith  16876  vdwlem1  16930  vdwlem3  16932  vdwlem10  16939  sylow1lem1  19514  psrbaglefi  21870  ovoliunlem1  25438  ovolicc2lem4  25456  uniioombllem3  25521  mbfi1fseqlem3  25653  plyeq0lem  26150  coeeulem  26164  coeidlem  26177  coeid3  26180  coeeq2  26182  coemulhi  26194  vieta1lem2  26254  birthdaylem2  26897  birthdaylem3  26898  ftalem5  27022  basellem2  27027  basellem3  27028  basellem5  27030  musum  27136  fsumvma2  27160  chpchtsum  27165  lgsne0  27281  lgsquadlem2  27327  rplogsumlem2  27431  dchrisumlem1  27435  dchrisum0lem1  27462  ostth2lem3  27581  eupth2lems  30219  fzsplit3  32768  eulerpartlems  34346  eulerpartlemb  34354  erdszelem7  35179  cvmliftlem7  35273
  Copyright terms: Public domain W3C validator