MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz5 Structured version   Visualization version   GIF version

Theorem elfz5 13477
Description: Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.)
Assertion
Ref Expression
elfz5 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾𝑁))

Proof of Theorem elfz5
StepHypRef Expression
1 eluzelz 12803 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
2 eluzel2 12798 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2jca 511 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
4 elfz 13474 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
543expa 1118 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
63, 5sylan 580 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
7 eluzle 12806 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
87biantrurd 532 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝐾𝑁 ↔ (𝑀𝐾𝐾𝑁)))
98adantr 480 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾𝑁 ↔ (𝑀𝐾𝐾𝑁)))
106, 9bitr4d 282 1 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cle 11209  cz 12529  cuz 12793  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-neg 11408  df-z 12530  df-uz 12794  df-fz 13469
This theorem is referenced by:  fzsplit2  13510  fznn0sub2  13596  predfz  13614  bcval5  14283  hashf1  14422  seqcoll  14429  limsupgre  15447  isercolllem2  15632  isercoll  15634  fsumcvg3  15695  fsum0diaglem  15742  climcndslem2  15816  mertenslem1  15850  ncoprmlnprm  16698  pcfac  16870  prmreclem2  16888  prmreclem3  16889  prmreclem5  16891  1arith  16898  vdwlem1  16952  vdwlem3  16954  vdwlem10  16961  sylow1lem1  19528  psrbaglefi  21835  ovoliunlem1  25403  ovolicc2lem4  25421  uniioombllem3  25486  mbfi1fseqlem3  25618  plyeq0lem  26115  coeeulem  26129  coeidlem  26142  coeid3  26145  coeeq2  26147  coemulhi  26159  vieta1lem2  26219  birthdaylem2  26862  birthdaylem3  26863  ftalem5  26987  basellem2  26992  basellem3  26993  basellem5  26995  musum  27101  fsumvma2  27125  chpchtsum  27130  lgsne0  27246  lgsquadlem2  27292  rplogsumlem2  27396  dchrisumlem1  27400  dchrisum0lem1  27427  ostth2lem3  27546  eupth2lems  30167  fzsplit3  32716  eulerpartlems  34351  eulerpartlemb  34359  erdszelem7  35184  cvmliftlem7  35278
  Copyright terms: Public domain W3C validator