MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz5 Structured version   Visualization version   GIF version

Theorem elfz5 13490
Description: Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.)
Assertion
Ref Expression
elfz5 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾𝑁))

Proof of Theorem elfz5
StepHypRef Expression
1 eluzelz 12829 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
2 eluzel2 12824 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2jca 513 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
4 elfz 13487 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
543expa 1119 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
63, 5sylan 581 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
7 eluzle 12832 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝑀𝐾)
87biantrurd 534 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝐾𝑁 ↔ (𝑀𝐾𝐾𝑁)))
98adantr 482 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾𝑁 ↔ (𝑀𝐾𝐾𝑁)))
106, 9bitr4d 282 1 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107   class class class wbr 5148  cfv 6541  (class class class)co 7406  cle 11246  cz 12555  cuz 12819  ...cfz 13481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-cnex 11163  ax-resscn 11164
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-neg 11444  df-z 12556  df-uz 12820  df-fz 13482
This theorem is referenced by:  fzsplit2  13523  fznn0sub2  13605  predfz  13623  bcval5  14275  hashf1  14415  seqcoll  14422  limsupgre  15422  isercolllem2  15609  isercoll  15611  fsumcvg3  15672  fsum0diaglem  15719  climcndslem2  15793  mertenslem1  15827  ncoprmlnprm  16661  pcfac  16829  prmreclem2  16847  prmreclem3  16848  prmreclem5  16850  1arith  16857  vdwlem1  16911  vdwlem3  16913  vdwlem10  16920  sylow1lem1  19461  psrbaglefi  21477  psrbaglefiOLD  21478  ovoliunlem1  25011  ovolicc2lem4  25029  uniioombllem3  25094  mbfi1fseqlem3  25227  plyeq0lem  25716  coeeulem  25730  coeidlem  25743  coeid3  25746  coeeq2  25748  coemulhi  25760  vieta1lem2  25816  birthdaylem2  26447  birthdaylem3  26448  ftalem5  26571  basellem2  26576  basellem3  26577  basellem5  26579  musum  26685  fsumvma2  26707  chpchtsum  26712  lgsne0  26828  lgsquadlem2  26874  rplogsumlem2  26978  dchrisumlem1  26982  dchrisum0lem1  27009  ostth2lem3  27128  eupth2lems  29481  fzsplit3  31993  eulerpartlems  33348  eulerpartlemb  33356  erdszelem7  34177  cvmliftlem7  34271
  Copyright terms: Public domain W3C validator