![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elhoi | Structured version Visualization version GIF version |
Description: Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elhoi.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
elhoi | ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovexd 7483 | . . 3 ⊢ (𝜑 → (𝐴[,)𝐵) ∈ V) | |
2 | elhoi.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | elmapg 8897 | . . 3 ⊢ (((𝐴[,)𝐵) ∈ V ∧ 𝑋 ∈ 𝑉) → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵))) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵))) |
5 | id 22 | . . . . . 6 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶(𝐴[,)𝐵)) | |
6 | icossxr 13492 | . . . . . . 7 ⊢ (𝐴[,)𝐵) ⊆ ℝ* | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝐴[,)𝐵) ⊆ ℝ*) |
8 | 5, 7 | fssd 6764 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶ℝ*) |
9 | ffvelcdm 7115 | . . . . . 6 ⊢ ((𝑌:𝑋⟶(𝐴[,)𝐵) ∧ 𝑥 ∈ 𝑋) → (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) | |
10 | 9 | ralrimiva 3152 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) |
11 | 8, 10 | jca 511 | . . . 4 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
12 | ffn 6747 | . . . . . . 7 ⊢ (𝑌:𝑋⟶ℝ* → 𝑌 Fn 𝑋) | |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → 𝑌 Fn 𝑋) |
14 | simpr 484 | . . . . . 6 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) | |
15 | 13, 14 | jca 511 | . . . . 5 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → (𝑌 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
16 | ffnfv 7153 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) | |
17 | 15, 16 | sylibr 234 | . . . 4 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → 𝑌:𝑋⟶(𝐴[,)𝐵)) |
18 | 11, 17 | impbii 209 | . . 3 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
19 | 18 | a1i 11 | . 2 ⊢ (𝜑 → (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
20 | 4, 19 | bitrd 279 | 1 ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ℝ*cxr 11323 [,)cico 13409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-xr 11328 df-ico 13413 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |