Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhoi Structured version   Visualization version   GIF version

Theorem elhoi 46547
Description: Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
elhoi.1 (𝜑𝑋𝑉)
Assertion
Ref Expression
elhoi (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elhoi
StepHypRef Expression
1 ovexd 7425 . . 3 (𝜑 → (𝐴[,)𝐵) ∈ V)
2 elhoi.1 . . 3 (𝜑𝑋𝑉)
3 elmapg 8815 . . 3 (((𝐴[,)𝐵) ∈ V ∧ 𝑋𝑉) → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵)))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵)))
5 id 22 . . . . . 6 (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶(𝐴[,)𝐵))
6 icossxr 13400 . . . . . . 7 (𝐴[,)𝐵) ⊆ ℝ*
76a1i 11 . . . . . 6 (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝐴[,)𝐵) ⊆ ℝ*)
85, 7fssd 6708 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶ℝ*)
9 ffvelcdm 7056 . . . . . 6 ((𝑌:𝑋⟶(𝐴[,)𝐵) ∧ 𝑥𝑋) → (𝑌𝑥) ∈ (𝐴[,)𝐵))
109ralrimiva 3126 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) → ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))
118, 10jca 511 . . . 4 (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
12 ffn 6691 . . . . . . 7 (𝑌:𝑋⟶ℝ*𝑌 Fn 𝑋)
1312adantr 480 . . . . . 6 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → 𝑌 Fn 𝑋)
14 simpr 484 . . . . . 6 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))
1513, 14jca 511 . . . . 5 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → (𝑌 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
16 ffnfv 7094 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
1715, 16sylibr 234 . . . 4 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → 𝑌:𝑋⟶(𝐴[,)𝐵))
1811, 17impbii 209 . . 3 (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
1918a1i 11 . 2 (𝜑 → (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
204, 19bitrd 279 1 (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3045  Vcvv 3450  wss 3917   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  *cxr 11214  [,)cico 13315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-xr 11219  df-ico 13319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator