Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhoi Structured version   Visualization version   GIF version

Theorem elhoi 44425
Description: Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
elhoi.1 (𝜑𝑋𝑉)
Assertion
Ref Expression
elhoi (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elhoi
StepHypRef Expression
1 ovexd 7372 . . 3 (𝜑 → (𝐴[,)𝐵) ∈ V)
2 elhoi.1 . . 3 (𝜑𝑋𝑉)
3 elmapg 8699 . . 3 (((𝐴[,)𝐵) ∈ V ∧ 𝑋𝑉) → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵)))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵)))
5 id 22 . . . . . 6 (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶(𝐴[,)𝐵))
6 icossxr 13265 . . . . . . 7 (𝐴[,)𝐵) ⊆ ℝ*
76a1i 11 . . . . . 6 (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝐴[,)𝐵) ⊆ ℝ*)
85, 7fssd 6669 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶ℝ*)
9 ffvelcdm 7015 . . . . . 6 ((𝑌:𝑋⟶(𝐴[,)𝐵) ∧ 𝑥𝑋) → (𝑌𝑥) ∈ (𝐴[,)𝐵))
109ralrimiva 3139 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) → ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))
118, 10jca 512 . . . 4 (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
12 ffn 6651 . . . . . . 7 (𝑌:𝑋⟶ℝ*𝑌 Fn 𝑋)
1312adantr 481 . . . . . 6 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → 𝑌 Fn 𝑋)
14 simpr 485 . . . . . 6 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))
1513, 14jca 512 . . . . 5 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → (𝑌 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
16 ffnfv 7048 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
1715, 16sylibr 233 . . . 4 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → 𝑌:𝑋⟶(𝐴[,)𝐵))
1811, 17impbii 208 . . 3 (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
1918a1i 11 . 2 (𝜑 → (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
204, 19bitrd 278 1 (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2105  wral 3061  Vcvv 3441  wss 3898   Fn wfn 6474  wf 6475  cfv 6479  (class class class)co 7337  m cmap 8686  *cxr 11109  [,)cico 13182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-1st 7899  df-2nd 7900  df-map 8688  df-xr 11114  df-ico 13186
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator