Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhoi Structured version   Visualization version   GIF version

Theorem elhoi 43112
Description: Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
elhoi.1 (𝜑𝑋𝑉)
Assertion
Ref Expression
elhoi (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elhoi
StepHypRef Expression
1 ovexd 7184 . . 3 (𝜑 → (𝐴[,)𝐵) ∈ V)
2 elhoi.1 . . 3 (𝜑𝑋𝑉)
3 elmapg 8415 . . 3 (((𝐴[,)𝐵) ∈ V ∧ 𝑋𝑉) → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵)))
41, 2, 3syl2anc 587 . 2 (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵)))
5 id 22 . . . . . 6 (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶(𝐴[,)𝐵))
6 icossxr 12819 . . . . . . 7 (𝐴[,)𝐵) ⊆ ℝ*
76a1i 11 . . . . . 6 (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝐴[,)𝐵) ⊆ ℝ*)
85, 7fssd 6518 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶ℝ*)
9 ffvelrn 6840 . . . . . 6 ((𝑌:𝑋⟶(𝐴[,)𝐵) ∧ 𝑥𝑋) → (𝑌𝑥) ∈ (𝐴[,)𝐵))
109ralrimiva 3177 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) → ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))
118, 10jca 515 . . . 4 (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
12 ffn 6503 . . . . . . 7 (𝑌:𝑋⟶ℝ*𝑌 Fn 𝑋)
1312adantr 484 . . . . . 6 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → 𝑌 Fn 𝑋)
14 simpr 488 . . . . . 6 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))
1513, 14jca 515 . . . . 5 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → (𝑌 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
16 ffnfv 6873 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
1715, 16sylibr 237 . . . 4 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → 𝑌:𝑋⟶(𝐴[,)𝐵))
1811, 17impbii 212 . . 3 (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
1918a1i 11 . 2 (𝜑 → (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
204, 19bitrd 282 1 (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2115  wral 3133  Vcvv 3480  wss 3919   Fn wfn 6338  wf 6339  cfv 6343  (class class class)co 7149  m cmap 8402  *cxr 10672  [,)cico 12737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-map 8404  df-xr 10677  df-ico 12741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator