| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elhoi | Structured version Visualization version GIF version | ||
| Description: Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elhoi.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| elhoi | ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovexd 7422 | . . 3 ⊢ (𝜑 → (𝐴[,)𝐵) ∈ V) | |
| 2 | elhoi.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | elmapg 8812 | . . 3 ⊢ (((𝐴[,)𝐵) ∈ V ∧ 𝑋 ∈ 𝑉) → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵))) |
| 5 | id 22 | . . . . . 6 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶(𝐴[,)𝐵)) | |
| 6 | icossxr 13393 | . . . . . . 7 ⊢ (𝐴[,)𝐵) ⊆ ℝ* | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝐴[,)𝐵) ⊆ ℝ*) |
| 8 | 5, 7 | fssd 6705 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶ℝ*) |
| 9 | ffvelcdm 7053 | . . . . . 6 ⊢ ((𝑌:𝑋⟶(𝐴[,)𝐵) ∧ 𝑥 ∈ 𝑋) → (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) | |
| 10 | 9 | ralrimiva 3125 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) |
| 11 | 8, 10 | jca 511 | . . . 4 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
| 12 | ffn 6688 | . . . . . . 7 ⊢ (𝑌:𝑋⟶ℝ* → 𝑌 Fn 𝑋) | |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → 𝑌 Fn 𝑋) |
| 14 | simpr 484 | . . . . . 6 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) | |
| 15 | 13, 14 | jca 511 | . . . . 5 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → (𝑌 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
| 16 | ffnfv 7091 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) | |
| 17 | 15, 16 | sylibr 234 | . . . 4 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → 𝑌:𝑋⟶(𝐴[,)𝐵)) |
| 18 | 11, 17 | impbii 209 | . . 3 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
| 19 | 18 | a1i 11 | . 2 ⊢ (𝜑 → (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
| 20 | 4, 19 | bitrd 279 | 1 ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℝ*cxr 11207 [,)cico 13308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-xr 11212 df-ico 13312 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |