| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elhoi | Structured version Visualization version GIF version | ||
| Description: Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| elhoi.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| elhoi | ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovexd 7440 | . . 3 ⊢ (𝜑 → (𝐴[,)𝐵) ∈ V) | |
| 2 | elhoi.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | elmapg 8853 | . . 3 ⊢ (((𝐴[,)𝐵) ∈ V ∧ 𝑋 ∈ 𝑉) → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵))) |
| 5 | id 22 | . . . . . 6 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶(𝐴[,)𝐵)) | |
| 6 | icossxr 13449 | . . . . . . 7 ⊢ (𝐴[,)𝐵) ⊆ ℝ* | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝐴[,)𝐵) ⊆ ℝ*) |
| 8 | 5, 7 | fssd 6723 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶ℝ*) |
| 9 | ffvelcdm 7071 | . . . . . 6 ⊢ ((𝑌:𝑋⟶(𝐴[,)𝐵) ∧ 𝑥 ∈ 𝑋) → (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) | |
| 10 | 9 | ralrimiva 3132 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) |
| 11 | 8, 10 | jca 511 | . . . 4 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
| 12 | ffn 6706 | . . . . . . 7 ⊢ (𝑌:𝑋⟶ℝ* → 𝑌 Fn 𝑋) | |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → 𝑌 Fn 𝑋) |
| 14 | simpr 484 | . . . . . 6 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) | |
| 15 | 13, 14 | jca 511 | . . . . 5 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → (𝑌 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
| 16 | ffnfv 7109 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) | |
| 17 | 15, 16 | sylibr 234 | . . . 4 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → 𝑌:𝑋⟶(𝐴[,)𝐵)) |
| 18 | 11, 17 | impbii 209 | . . 3 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
| 19 | 18 | a1i 11 | . 2 ⊢ (𝜑 → (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
| 20 | 4, 19 | bitrd 279 | 1 ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 ℝ*cxr 11268 [,)cico 13364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 df-xr 11273 df-ico 13368 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |