Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elhoi | Structured version Visualization version GIF version |
Description: Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elhoi.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
elhoi | ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovexd 7290 | . . 3 ⊢ (𝜑 → (𝐴[,)𝐵) ∈ V) | |
2 | elhoi.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | elmapg 8586 | . . 3 ⊢ (((𝐴[,)𝐵) ∈ V ∧ 𝑋 ∈ 𝑉) → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵))) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵))) |
5 | id 22 | . . . . . 6 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶(𝐴[,)𝐵)) | |
6 | icossxr 13093 | . . . . . . 7 ⊢ (𝐴[,)𝐵) ⊆ ℝ* | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝐴[,)𝐵) ⊆ ℝ*) |
8 | 5, 7 | fssd 6602 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶ℝ*) |
9 | ffvelrn 6941 | . . . . . 6 ⊢ ((𝑌:𝑋⟶(𝐴[,)𝐵) ∧ 𝑥 ∈ 𝑋) → (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) | |
10 | 9 | ralrimiva 3107 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) |
11 | 8, 10 | jca 511 | . . . 4 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
12 | ffn 6584 | . . . . . . 7 ⊢ (𝑌:𝑋⟶ℝ* → 𝑌 Fn 𝑋) | |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → 𝑌 Fn 𝑋) |
14 | simpr 484 | . . . . . 6 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) | |
15 | 13, 14 | jca 511 | . . . . 5 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → (𝑌 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
16 | ffnfv 6974 | . . . . 5 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌 Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) | |
17 | 15, 16 | sylibr 233 | . . . 4 ⊢ ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)) → 𝑌:𝑋⟶(𝐴[,)𝐵)) |
18 | 11, 17 | impbii 208 | . . 3 ⊢ (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵))) |
19 | 18 | a1i 11 | . 2 ⊢ (𝜑 → (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
20 | 4, 19 | bitrd 278 | 1 ⊢ (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑m 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 (𝑌‘𝑥) ∈ (𝐴[,)𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℝ*cxr 10939 [,)cico 13010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-xr 10944 df-ico 13014 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |