Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhoi Structured version   Visualization version   GIF version

Theorem elhoi 41551
Description: Membership in a multidimensional half-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
elhoi.1 (𝜑𝑋𝑉)
Assertion
Ref Expression
elhoi (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑𝑚 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elhoi
StepHypRef Expression
1 ovexd 6940 . . 3 (𝜑 → (𝐴[,)𝐵) ∈ V)
2 elhoi.1 . . 3 (𝜑𝑋𝑉)
3 elmapg 8136 . . 3 (((𝐴[,)𝐵) ∈ V ∧ 𝑋𝑉) → (𝑌 ∈ ((𝐴[,)𝐵) ↑𝑚 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵)))
41, 2, 3syl2anc 581 . 2 (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑𝑚 𝑋) ↔ 𝑌:𝑋⟶(𝐴[,)𝐵)))
5 id 22 . . . . . 6 (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶(𝐴[,)𝐵))
6 icossxr 12547 . . . . . . 7 (𝐴[,)𝐵) ⊆ ℝ*
76a1i 11 . . . . . 6 (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝐴[,)𝐵) ⊆ ℝ*)
85, 7fssd 6293 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) → 𝑌:𝑋⟶ℝ*)
9 ffvelrn 6607 . . . . . 6 ((𝑌:𝑋⟶(𝐴[,)𝐵) ∧ 𝑥𝑋) → (𝑌𝑥) ∈ (𝐴[,)𝐵))
109ralrimiva 3176 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) → ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))
118, 10jca 509 . . . 4 (𝑌:𝑋⟶(𝐴[,)𝐵) → (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
12 ffn 6279 . . . . . . 7 (𝑌:𝑋⟶ℝ*𝑌 Fn 𝑋)
1312adantr 474 . . . . . 6 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → 𝑌 Fn 𝑋)
14 simpr 479 . . . . . 6 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))
1513, 14jca 509 . . . . 5 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → (𝑌 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
16 ffnfv 6638 . . . . 5 (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌 Fn 𝑋 ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
1715, 16sylibr 226 . . . 4 ((𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)) → 𝑌:𝑋⟶(𝐴[,)𝐵))
1811, 17impbii 201 . . 3 (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵)))
1918a1i 11 . 2 (𝜑 → (𝑌:𝑋⟶(𝐴[,)𝐵) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
204, 19bitrd 271 1 (𝜑 → (𝑌 ∈ ((𝐴[,)𝐵) ↑𝑚 𝑋) ↔ (𝑌:𝑋⟶ℝ* ∧ ∀𝑥𝑋 (𝑌𝑥) ∈ (𝐴[,)𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2166  wral 3118  Vcvv 3415  wss 3799   Fn wfn 6119  wf 6120  cfv 6124  (class class class)co 6906  𝑚 cmap 8123  *cxr 10391  [,)cico 12466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-fv 6132  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-1st 7429  df-2nd 7430  df-map 8125  df-xr 10396  df-ico 12470
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator