Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > homaval | Structured version Visualization version GIF version |
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
homaval | ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7278 | . 2 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
2 | homarcl.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | homafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | homafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | homaval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐶) | |
6 | 2, 3, 4, 5 | homafval 17744 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑧 ∈ (𝐵 × 𝐵) ↦ ({𝑧} × (𝐽‘𝑧)))) |
7 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → 𝑧 = 〈𝑋, 𝑌〉) | |
8 | 7 | sneqd 4573 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → {𝑧} = {〈𝑋, 𝑌〉}) |
9 | 7 | fveq2d 6778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐽‘𝑧) = (𝐽‘〈𝑋, 𝑌〉)) |
10 | df-ov 7278 | . . . . 5 ⊢ (𝑋𝐽𝑌) = (𝐽‘〈𝑋, 𝑌〉) | |
11 | 9, 10 | eqtr4di 2796 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐽‘𝑧) = (𝑋𝐽𝑌)) |
12 | 8, 11 | xpeq12d 5620 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → ({𝑧} × (𝐽‘𝑧)) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
13 | homaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
14 | homaval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
15 | 13, 14 | opelxpd 5627 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
16 | snex 5354 | . . . . 5 ⊢ {〈𝑋, 𝑌〉} ∈ V | |
17 | ovex 7308 | . . . . 5 ⊢ (𝑋𝐽𝑌) ∈ V | |
18 | 16, 17 | xpex 7603 | . . . 4 ⊢ ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌)) ∈ V |
19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌)) ∈ V) |
20 | 6, 12, 15, 19 | fvmptd 6882 | . 2 ⊢ (𝜑 → (𝐻‘〈𝑋, 𝑌〉) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
21 | 1, 20 | eqtrid 2790 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 〈cop 4567 × cxp 5587 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Hom chom 16973 Catccat 17373 Homachoma 17738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-homa 17741 |
This theorem is referenced by: elhoma 17747 |
Copyright terms: Public domain | W3C validator |