| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homaval | Structured version Visualization version GIF version | ||
| Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
| homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| homaval | ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7390 | . 2 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
| 2 | homarcl.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | homafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | homafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | homaval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐶) | |
| 6 | 2, 3, 4, 5 | homafval 17991 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑧 ∈ (𝐵 × 𝐵) ↦ ({𝑧} × (𝐽‘𝑧)))) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → 𝑧 = 〈𝑋, 𝑌〉) | |
| 8 | 7 | sneqd 4601 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → {𝑧} = {〈𝑋, 𝑌〉}) |
| 9 | 7 | fveq2d 6862 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐽‘𝑧) = (𝐽‘〈𝑋, 𝑌〉)) |
| 10 | df-ov 7390 | . . . . 5 ⊢ (𝑋𝐽𝑌) = (𝐽‘〈𝑋, 𝑌〉) | |
| 11 | 9, 10 | eqtr4di 2782 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐽‘𝑧) = (𝑋𝐽𝑌)) |
| 12 | 8, 11 | xpeq12d 5669 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → ({𝑧} × (𝐽‘𝑧)) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
| 13 | homaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 14 | homaval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 15 | 13, 14 | opelxpd 5677 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 16 | snex 5391 | . . . . 5 ⊢ {〈𝑋, 𝑌〉} ∈ V | |
| 17 | ovex 7420 | . . . . 5 ⊢ (𝑋𝐽𝑌) ∈ V | |
| 18 | 16, 17 | xpex 7729 | . . . 4 ⊢ ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌)) ∈ V |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌)) ∈ V) |
| 20 | 6, 12, 15, 19 | fvmptd 6975 | . 2 ⊢ (𝜑 → (𝐻‘〈𝑋, 𝑌〉) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
| 21 | 1, 20 | eqtrid 2776 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 〈cop 4595 × cxp 5636 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Hom chom 17231 Catccat 17625 Homachoma 17985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-homa 17988 |
| This theorem is referenced by: elhoma 17994 |
| Copyright terms: Public domain | W3C validator |