| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homaval | Structured version Visualization version GIF version | ||
| Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
| homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| homaval | ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7349 | . 2 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
| 2 | homarcl.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
| 3 | homafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | homafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | homaval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐶) | |
| 6 | 2, 3, 4, 5 | homafval 17933 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑧 ∈ (𝐵 × 𝐵) ↦ ({𝑧} × (𝐽‘𝑧)))) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → 𝑧 = 〈𝑋, 𝑌〉) | |
| 8 | 7 | sneqd 4588 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → {𝑧} = {〈𝑋, 𝑌〉}) |
| 9 | 7 | fveq2d 6826 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐽‘𝑧) = (𝐽‘〈𝑋, 𝑌〉)) |
| 10 | df-ov 7349 | . . . . 5 ⊢ (𝑋𝐽𝑌) = (𝐽‘〈𝑋, 𝑌〉) | |
| 11 | 9, 10 | eqtr4di 2784 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐽‘𝑧) = (𝑋𝐽𝑌)) |
| 12 | 8, 11 | xpeq12d 5647 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → ({𝑧} × (𝐽‘𝑧)) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
| 13 | homaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 14 | homaval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 15 | 13, 14 | opelxpd 5655 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 16 | snex 5374 | . . . . 5 ⊢ {〈𝑋, 𝑌〉} ∈ V | |
| 17 | ovex 7379 | . . . . 5 ⊢ (𝑋𝐽𝑌) ∈ V | |
| 18 | 16, 17 | xpex 7686 | . . . 4 ⊢ ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌)) ∈ V |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌)) ∈ V) |
| 20 | 6, 12, 15, 19 | fvmptd 6936 | . 2 ⊢ (𝜑 → (𝐻‘〈𝑋, 𝑌〉) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
| 21 | 1, 20 | eqtrid 2778 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 〈cop 4582 × cxp 5614 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Hom chom 17169 Catccat 17567 Homachoma 17927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-homa 17930 |
| This theorem is referenced by: elhoma 17936 |
| Copyright terms: Public domain | W3C validator |