MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homaval Structured version   Visualization version   GIF version

Theorem homaval 18098
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homaval.j 𝐽 = (Hom ‘𝐶)
homaval.x (𝜑𝑋𝐵)
homaval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
homaval (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))

Proof of Theorem homaval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7451 . 2 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
2 homarcl.h . . . 4 𝐻 = (Homa𝐶)
3 homafval.b . . . 4 𝐵 = (Base‘𝐶)
4 homafval.c . . . 4 (𝜑𝐶 ∈ Cat)
5 homaval.j . . . 4 𝐽 = (Hom ‘𝐶)
62, 3, 4, 5homafval 18096 . . 3 (𝜑𝐻 = (𝑧 ∈ (𝐵 × 𝐵) ↦ ({𝑧} × (𝐽𝑧))))
7 simpr 484 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → 𝑧 = ⟨𝑋, 𝑌⟩)
87sneqd 4660 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → {𝑧} = {⟨𝑋, 𝑌⟩})
97fveq2d 6924 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐽𝑧) = (𝐽‘⟨𝑋, 𝑌⟩))
10 df-ov 7451 . . . . 5 (𝑋𝐽𝑌) = (𝐽‘⟨𝑋, 𝑌⟩)
119, 10eqtr4di 2798 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐽𝑧) = (𝑋𝐽𝑌))
128, 11xpeq12d 5731 . . 3 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → ({𝑧} × (𝐽𝑧)) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
13 homaval.x . . . 4 (𝜑𝑋𝐵)
14 homaval.y . . . 4 (𝜑𝑌𝐵)
1513, 14opelxpd 5739 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
16 snex 5451 . . . . 5 {⟨𝑋, 𝑌⟩} ∈ V
17 ovex 7481 . . . . 5 (𝑋𝐽𝑌) ∈ V
1816, 17xpex 7788 . . . 4 ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)) ∈ V
1918a1i 11 . . 3 (𝜑 → ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)) ∈ V)
206, 12, 15, 19fvmptd 7036 . 2 (𝜑 → (𝐻‘⟨𝑋, 𝑌⟩) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
211, 20eqtrid 2792 1 (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  cop 4654   × cxp 5698  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  Catccat 17722  Homachoma 18090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-homa 18093
This theorem is referenced by:  elhoma  18099
  Copyright terms: Public domain W3C validator