MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homaval Structured version   Visualization version   GIF version

Theorem homaval 17662
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homaval.j 𝐽 = (Hom ‘𝐶)
homaval.x (𝜑𝑋𝐵)
homaval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
homaval (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))

Proof of Theorem homaval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7258 . 2 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
2 homarcl.h . . . 4 𝐻 = (Homa𝐶)
3 homafval.b . . . 4 𝐵 = (Base‘𝐶)
4 homafval.c . . . 4 (𝜑𝐶 ∈ Cat)
5 homaval.j . . . 4 𝐽 = (Hom ‘𝐶)
62, 3, 4, 5homafval 17660 . . 3 (𝜑𝐻 = (𝑧 ∈ (𝐵 × 𝐵) ↦ ({𝑧} × (𝐽𝑧))))
7 simpr 484 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → 𝑧 = ⟨𝑋, 𝑌⟩)
87sneqd 4570 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → {𝑧} = {⟨𝑋, 𝑌⟩})
97fveq2d 6760 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐽𝑧) = (𝐽‘⟨𝑋, 𝑌⟩))
10 df-ov 7258 . . . . 5 (𝑋𝐽𝑌) = (𝐽‘⟨𝑋, 𝑌⟩)
119, 10eqtr4di 2797 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐽𝑧) = (𝑋𝐽𝑌))
128, 11xpeq12d 5611 . . 3 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → ({𝑧} × (𝐽𝑧)) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
13 homaval.x . . . 4 (𝜑𝑋𝐵)
14 homaval.y . . . 4 (𝜑𝑌𝐵)
1513, 14opelxpd 5618 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
16 snex 5349 . . . . 5 {⟨𝑋, 𝑌⟩} ∈ V
17 ovex 7288 . . . . 5 (𝑋𝐽𝑌) ∈ V
1816, 17xpex 7581 . . . 4 ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)) ∈ V
1918a1i 11 . . 3 (𝜑 → ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)) ∈ V)
206, 12, 15, 19fvmptd 6864 . 2 (𝜑 → (𝐻‘⟨𝑋, 𝑌⟩) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
211, 20eqtrid 2790 1 (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  cop 4564   × cxp 5578  cfv 6418  (class class class)co 7255  Basecbs 16840  Hom chom 16899  Catccat 17290  Homachoma 17654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-homa 17657
This theorem is referenced by:  elhoma  17663
  Copyright terms: Public domain W3C validator