MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homaval Structured version   Visualization version   GIF version

Theorem homaval 17956
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homaval.j 𝐽 = (Hom ‘𝐶)
homaval.x (𝜑𝑋𝐵)
homaval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
homaval (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))

Proof of Theorem homaval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7356 . 2 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
2 homarcl.h . . . 4 𝐻 = (Homa𝐶)
3 homafval.b . . . 4 𝐵 = (Base‘𝐶)
4 homafval.c . . . 4 (𝜑𝐶 ∈ Cat)
5 homaval.j . . . 4 𝐽 = (Hom ‘𝐶)
62, 3, 4, 5homafval 17954 . . 3 (𝜑𝐻 = (𝑧 ∈ (𝐵 × 𝐵) ↦ ({𝑧} × (𝐽𝑧))))
7 simpr 484 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → 𝑧 = ⟨𝑋, 𝑌⟩)
87sneqd 4591 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → {𝑧} = {⟨𝑋, 𝑌⟩})
97fveq2d 6830 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐽𝑧) = (𝐽‘⟨𝑋, 𝑌⟩))
10 df-ov 7356 . . . . 5 (𝑋𝐽𝑌) = (𝐽‘⟨𝑋, 𝑌⟩)
119, 10eqtr4di 2782 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐽𝑧) = (𝑋𝐽𝑌))
128, 11xpeq12d 5654 . . 3 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → ({𝑧} × (𝐽𝑧)) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
13 homaval.x . . . 4 (𝜑𝑋𝐵)
14 homaval.y . . . 4 (𝜑𝑌𝐵)
1513, 14opelxpd 5662 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
16 snex 5378 . . . . 5 {⟨𝑋, 𝑌⟩} ∈ V
17 ovex 7386 . . . . 5 (𝑋𝐽𝑌) ∈ V
1816, 17xpex 7693 . . . 4 ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)) ∈ V
1918a1i 11 . . 3 (𝜑 → ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)) ∈ V)
206, 12, 15, 19fvmptd 6941 . 2 (𝜑 → (𝐻‘⟨𝑋, 𝑌⟩) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
211, 20eqtrid 2776 1 (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  cop 4585   × cxp 5621  cfv 6486  (class class class)co 7353  Basecbs 17138  Hom chom 17190  Catccat 17588  Homachoma 17948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-homa 17951
This theorem is referenced by:  elhoma  17957
  Copyright terms: Public domain W3C validator