![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homaval | Structured version Visualization version GIF version |
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
homaval | ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7417 | . 2 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
2 | homarcl.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | homafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | homafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | homaval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐶) | |
6 | 2, 3, 4, 5 | homafval 18044 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑧 ∈ (𝐵 × 𝐵) ↦ ({𝑧} × (𝐽‘𝑧)))) |
7 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → 𝑧 = 〈𝑋, 𝑌〉) | |
8 | 7 | sneqd 4636 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → {𝑧} = {〈𝑋, 𝑌〉}) |
9 | 7 | fveq2d 6895 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐽‘𝑧) = (𝐽‘〈𝑋, 𝑌〉)) |
10 | df-ov 7417 | . . . . 5 ⊢ (𝑋𝐽𝑌) = (𝐽‘〈𝑋, 𝑌〉) | |
11 | 9, 10 | eqtr4di 2784 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐽‘𝑧) = (𝑋𝐽𝑌)) |
12 | 8, 11 | xpeq12d 5704 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → ({𝑧} × (𝐽‘𝑧)) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
13 | homaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
14 | homaval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
15 | 13, 14 | opelxpd 5712 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
16 | snex 5428 | . . . . 5 ⊢ {〈𝑋, 𝑌〉} ∈ V | |
17 | ovex 7447 | . . . . 5 ⊢ (𝑋𝐽𝑌) ∈ V | |
18 | 16, 17 | xpex 7751 | . . . 4 ⊢ ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌)) ∈ V |
19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌)) ∈ V) |
20 | 6, 12, 15, 19 | fvmptd 7006 | . 2 ⊢ (𝜑 → (𝐻‘〈𝑋, 𝑌〉) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
21 | 1, 20 | eqtrid 2778 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = ({〈𝑋, 𝑌〉} × (𝑋𝐽𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3463 {csn 4624 〈cop 4630 × cxp 5671 ‘cfv 6544 (class class class)co 7414 Basecbs 17206 Hom chom 17270 Catccat 17670 Homachoma 18038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7417 df-homa 18041 |
This theorem is referenced by: elhoma 18047 |
Copyright terms: Public domain | W3C validator |