![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homaval | Structured version Visualization version GIF version |
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homarcl.h | ⊢ 𝐻 = (Homa‘𝐶) |
homafval.b | ⊢ 𝐵 = (Base‘𝐶) |
homafval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
homaval.j | ⊢ 𝐽 = (Hom ‘𝐶) |
homaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
homaval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
homaval | ⊢ (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7412 | . 2 ⊢ (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩) | |
2 | homarcl.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
3 | homafval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | homafval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | homaval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐶) | |
6 | 2, 3, 4, 5 | homafval 17979 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑧 ∈ (𝐵 × 𝐵) ↦ ({𝑧} × (𝐽‘𝑧)))) |
7 | simpr 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = ⟨𝑋, 𝑌⟩) → 𝑧 = ⟨𝑋, 𝑌⟩) | |
8 | 7 | sneqd 4641 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = ⟨𝑋, 𝑌⟩) → {𝑧} = {⟨𝑋, 𝑌⟩}) |
9 | 7 | fveq2d 6896 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = ⟨𝑋, 𝑌⟩) → (𝐽‘𝑧) = (𝐽‘⟨𝑋, 𝑌⟩)) |
10 | df-ov 7412 | . . . . 5 ⊢ (𝑋𝐽𝑌) = (𝐽‘⟨𝑋, 𝑌⟩) | |
11 | 9, 10 | eqtr4di 2791 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = ⟨𝑋, 𝑌⟩) → (𝐽‘𝑧) = (𝑋𝐽𝑌)) |
12 | 8, 11 | xpeq12d 5708 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = ⟨𝑋, 𝑌⟩) → ({𝑧} × (𝐽‘𝑧)) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))) |
13 | homaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
14 | homaval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
15 | 13, 14 | opelxpd 5716 | . . 3 ⊢ (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵)) |
16 | snex 5432 | . . . . 5 ⊢ {⟨𝑋, 𝑌⟩} ∈ V | |
17 | ovex 7442 | . . . . 5 ⊢ (𝑋𝐽𝑌) ∈ V | |
18 | 16, 17 | xpex 7740 | . . . 4 ⊢ ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)) ∈ V |
19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌)) ∈ V) |
20 | 6, 12, 15, 19 | fvmptd 7006 | . 2 ⊢ (𝜑 → (𝐻‘⟨𝑋, 𝑌⟩) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))) |
21 | 1, 20 | eqtrid 2785 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = ({⟨𝑋, 𝑌⟩} × (𝑋𝐽𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 {csn 4629 ⟨cop 4635 × cxp 5675 ‘cfv 6544 (class class class)co 7409 Basecbs 17144 Hom chom 17208 Catccat 17608 Homachoma 17973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-homa 17976 |
This theorem is referenced by: elhoma 17982 |
Copyright terms: Public domain | W3C validator |