| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leidi | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| lt2.1 | ⊢ 𝐴 ∈ ℝ |
| Ref | Expression |
|---|---|
| leidi | ⊢ 𝐴 ≤ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt2.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | leid 11270 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ≤ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-pre-lttri 11142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: 1le1 11806 elimge0 12021 lemul1a 12036 0le0 12287 dfuzi 12625 fldiv4p1lem1div2 13797 facwordi 14254 sincos2sgn 16162 strle1 17128 dscmet 24460 tanabsge 26415 logneg 26497 log2ublem2 26857 emcllem6 26911 harmonicbnd3 26918 ppiublem2 27114 chebbnd1lem3 27382 rpvmasumlem 27398 axlowdimlem6 28874 umgrupgr 29030 umgrislfupgr 29050 usgrislfuspgr 29114 usgr2pthlem 29693 konigsberglem4 30184 pfx1s2 32860 lmat22e12 33809 lmat22e21 33810 lmat22e22 33811 oddpwdc 34345 tgoldbachgt 34654 bj-pinftynminfty 37215 lhe4.4ex1a 44318 limsup10exlem 45770 fourierdlem112 46216 salexct3 46340 salgensscntex 46342 0ome 46527 2ltceilhalf 47329 wtgoldbnnsum4prm 47803 bgoldbnnsum3prm 47805 usgrexmpl2lem 48017 |
| Copyright terms: Public domain | W3C validator |