| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leidi | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| lt2.1 | ⊢ 𝐴 ∈ ℝ |
| Ref | Expression |
|---|---|
| leidi | ⊢ 𝐴 ≤ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt2.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | leid 11246 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ≤ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-pre-lttri 11118 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 |
| This theorem is referenced by: 1le1 11782 elimge0 11997 lemul1a 12012 0le0 12263 dfuzi 12601 fldiv4p1lem1div2 13773 facwordi 14230 sincos2sgn 16138 strle1 17104 dscmet 24436 tanabsge 26391 logneg 26473 log2ublem2 26833 emcllem6 26887 harmonicbnd3 26894 ppiublem2 27090 chebbnd1lem3 27358 rpvmasumlem 27374 axlowdimlem6 28850 umgrupgr 29006 umgrislfupgr 29026 usgrislfuspgr 29090 usgr2pthlem 29666 konigsberglem4 30157 pfx1s2 32833 lmat22e12 33782 lmat22e21 33783 lmat22e22 33784 oddpwdc 34318 tgoldbachgt 34627 bj-pinftynminfty 37188 lhe4.4ex1a 44291 limsup10exlem 45743 fourierdlem112 46189 salexct3 46313 salgensscntex 46315 0ome 46500 2ltceilhalf 47302 wtgoldbnnsum4prm 47776 bgoldbnnsum3prm 47778 usgrexmpl2lem 47990 |
| Copyright terms: Public domain | W3C validator |