Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leidi | Structured version Visualization version GIF version |
Description: 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
lt2.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
leidi | ⊢ 𝐴 ≤ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt2.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | leid 10814 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ≤ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2114 class class class wbr 5030 ℝcr 10614 ≤ cle 10754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-resscn 10672 ax-pre-lttri 10689 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 |
This theorem is referenced by: 1le1 11346 elimge0 11557 lemul1a 11572 0le0 11817 dfuzi 12154 fldiv4p1lem1div2 13296 facwordi 13741 sincos2sgn 15639 strle1 16695 cnfldfun 20229 dscmet 23325 tanabsge 25251 logneg 25331 log2ublem2 25685 emcllem6 25738 harmonicbnd3 25745 ppiublem2 25939 chebbnd1lem3 26207 rpvmasumlem 26223 axlowdimlem6 26893 umgrupgr 27048 umgrislfupgr 27068 usgrislfuspgr 27129 usgr2pthlem 27704 konigsberglem4 28192 pfx1s2 30788 lmat22e12 31341 lmat22e21 31342 lmat22e22 31343 oddpwdc 31891 tgoldbachgt 32213 bj-pinftynminfty 35019 lhe4.4ex1a 41485 limsup10exlem 42855 fourierdlem112 43301 salexct3 43423 salgensscntex 43425 0ome 43609 wtgoldbnnsum4prm 44788 bgoldbnnsum3prm 44790 |
Copyright terms: Public domain | W3C validator |