![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leidi | Structured version Visualization version GIF version |
Description: 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
lt2.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
leidi | ⊢ 𝐴 ≤ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt2.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | leid 11355 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ≤ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 class class class wbr 5148 ℝcr 11152 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-pre-lttri 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 |
This theorem is referenced by: 1le1 11889 elimge0 12104 lemul1a 12119 0le0 12365 dfuzi 12707 fldiv4p1lem1div2 13872 facwordi 14325 sincos2sgn 16227 strle1 17192 cnfldfunALTOLDOLD 21411 dscmet 24601 tanabsge 26563 logneg 26645 log2ublem2 27005 emcllem6 27059 harmonicbnd3 27066 ppiublem2 27262 chebbnd1lem3 27530 rpvmasumlem 27546 axlowdimlem6 28977 umgrupgr 29135 umgrislfupgr 29155 usgrislfuspgr 29219 usgr2pthlem 29796 konigsberglem4 30284 pfx1s2 32908 lmat22e12 33780 lmat22e21 33781 lmat22e22 33782 oddpwdc 34336 tgoldbachgt 34657 bj-pinftynminfty 37210 lhe4.4ex1a 44325 limsup10exlem 45728 fourierdlem112 46174 salexct3 46298 salgensscntex 46300 0ome 46485 wtgoldbnnsum4prm 47727 bgoldbnnsum3prm 47729 usgrexmpl2lem 47921 2ltceilhalf 47950 |
Copyright terms: Public domain | W3C validator |