| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leidi | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| lt2.1 | ⊢ 𝐴 ∈ ℝ |
| Ref | Expression |
|---|---|
| leidi | ⊢ 𝐴 ≤ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt2.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | leid 11212 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ≤ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 class class class wbr 5092 ℝcr 11008 ≤ cle 11150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-pre-lttri 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 |
| This theorem is referenced by: 1le1 11748 elimge0 11963 lemul1a 11978 0le0 12229 dfuzi 12567 fldiv4p1lem1div2 13739 facwordi 14196 sincos2sgn 16103 strle1 17069 dscmet 24458 tanabsge 26413 logneg 26495 log2ublem2 26855 emcllem6 26909 harmonicbnd3 26916 ppiublem2 27112 chebbnd1lem3 27380 rpvmasumlem 27396 axlowdimlem6 28892 umgrupgr 29048 umgrislfupgr 29068 usgrislfuspgr 29132 usgr2pthlem 29708 konigsberglem4 30199 pfx1s2 32880 lmat22e12 33786 lmat22e21 33787 lmat22e22 33788 oddpwdc 34322 tgoldbachgt 34631 bj-pinftynminfty 37201 lhe4.4ex1a 44302 limsup10exlem 45753 fourierdlem112 46199 salexct3 46323 salgensscntex 46325 0ome 46510 2ltceilhalf 47312 wtgoldbnnsum4prm 47786 bgoldbnnsum3prm 47788 usgrexmpl2lem 48010 |
| Copyright terms: Public domain | W3C validator |