MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltp1 Structured version   Visualization version   GIF version

Theorem ltp1 12134
Description: A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
Assertion
Ref Expression
ltp1 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))

Proof of Theorem ltp1
StepHypRef Expression
1 1re 11290 . 2 1 ∈ ℝ
2 0lt1 11812 . . 3 0 < 1
3 ltaddpos 11780 . . 3 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 1 ↔ 𝐴 < (𝐴 + 1)))
42, 3mpbii 233 . 2 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 < (𝐴 + 1))
51, 4mpan 689 1 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523
This theorem is referenced by:  lep1  12135  letrp1  12138  recp1lt1  12193  ledivp1  12197  ltp1i  12199  ltp1d  12225  sup2  12251  uzind  12735  ge0p1rp  13088  qbtwnxr  13262  xrsupsslem  13369  supxrunb1  13381  fzp1disj  13643  fzneuz  13665  fzp1nel  13668  fsequb  14026  caubnd  15407  rlim2lt  15543  o1fsum  15861  pcprendvds  16887  pcmpt  16939  iocopnst  24989  bndth  25009  ovolicc2lem3  25573  ioorcl2  25626  itg2const2  25796  reeff1olem  26508  axlowdimlem13  28987  icoreunrn  37325  poimirlem4  37584  poimirlem22  37602  mblfinlem1  37617  aks4d1p1p4  42028  xrpnf  45401  limsupre3lem  45653  fourierdlem25  46053  smfresal  46709  natlocalincr  46795
  Copyright terms: Public domain W3C validator