MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltp1 Structured version   Visualization version   GIF version

Theorem ltp1 12079
Description: A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
Assertion
Ref Expression
ltp1 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))

Proof of Theorem ltp1
StepHypRef Expression
1 1re 11239 . 2 1 ∈ ℝ
2 0lt1 11761 . . 3 0 < 1
3 ltaddpos 11729 . . 3 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 1 ↔ 𝐴 < (𝐴 + 1)))
42, 3mpbii 232 . 2 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 < (𝐴 + 1))
51, 4mpan 689 1 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099   class class class wbr 5143  (class class class)co 7415  cr 11132  0cc0 11133  1c1 11134   + caddc 11136   < clt 11273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-po 5585  df-so 5586  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472
This theorem is referenced by:  lep1  12080  letrp1  12083  recp1lt1  12137  ledivp1  12141  ltp1i  12143  ltp1d  12169  sup2  12195  uzind  12679  ge0p1rp  13032  qbtwnxr  13206  xrsupsslem  13313  supxrunb1  13325  fzp1disj  13587  fzneuz  13609  fzp1nel  13612  fsequb  13967  caubnd  15332  rlim2lt  15468  o1fsum  15786  pcprendvds  16803  pcmpt  16855  iocopnst  24858  bndth  24878  ovolicc2lem3  25442  ioorcl2  25495  itg2const2  25665  reeff1olem  26377  axlowdimlem13  28759  icoreunrn  36833  poimirlem4  37092  poimirlem22  37110  mblfinlem1  37125  aks4d1p1p4  41537  xrpnf  44859  limsupre3lem  45111  fourierdlem25  45511  smfresal  46167  natlocalincr  46253
  Copyright terms: Public domain W3C validator