![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltp1 | Structured version Visualization version GIF version |
Description: A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.) |
Ref | Expression |
---|---|
ltp1 | ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11290 | . 2 ⊢ 1 ∈ ℝ | |
2 | 0lt1 11812 | . . 3 ⊢ 0 < 1 | |
3 | ltaddpos 11780 | . . 3 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 1 ↔ 𝐴 < (𝐴 + 1))) | |
4 | 2, 3 | mpbii 233 | . 2 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 < (𝐴 + 1)) |
5 | 1, 4 | mpan 689 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 |
This theorem is referenced by: lep1 12135 letrp1 12138 recp1lt1 12193 ledivp1 12197 ltp1i 12199 ltp1d 12225 sup2 12251 uzind 12735 ge0p1rp 13088 qbtwnxr 13262 xrsupsslem 13369 supxrunb1 13381 fzp1disj 13643 fzneuz 13665 fzp1nel 13668 fsequb 14026 caubnd 15407 rlim2lt 15543 o1fsum 15861 pcprendvds 16887 pcmpt 16939 iocopnst 24989 bndth 25009 ovolicc2lem3 25573 ioorcl2 25626 itg2const2 25796 reeff1olem 26508 axlowdimlem13 28987 icoreunrn 37325 poimirlem4 37584 poimirlem22 37602 mblfinlem1 37617 aks4d1p1p4 42028 xrpnf 45401 limsupre3lem 45653 fourierdlem25 46053 smfresal 46709 natlocalincr 46795 |
Copyright terms: Public domain | W3C validator |