| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltp1 | Structured version Visualization version GIF version | ||
| Description: A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.) |
| Ref | Expression |
|---|---|
| ltp1 | ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11174 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 0lt1 11700 | . . 3 ⊢ 0 < 1 | |
| 3 | ltaddpos 11668 | . . 3 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 1 ↔ 𝐴 < (𝐴 + 1))) | |
| 4 | 2, 3 | mpbii 233 | . 2 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 < (𝐴 + 1)) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: lep1 12023 letrp1 12026 recp1lt1 12081 ledivp1 12085 ltp1i 12087 ltp1d 12113 sup2 12139 uzind 12626 ge0p1rp 12984 qbtwnxr 13160 xrsupsslem 13267 supxrunb1 13279 fzp1disj 13544 fzneuz 13569 fzp1nel 13572 fsequb 13940 caubnd 15325 rlim2lt 15463 o1fsum 15779 pcprendvds 16811 pcmpt 16863 iocopnst 24837 bndth 24857 ovolicc2lem3 25420 ioorcl2 25473 itg2const2 25642 reeff1olem 26356 axlowdimlem13 28881 icoreunrn 37347 poimirlem4 37618 poimirlem22 37636 mblfinlem1 37651 aks4d1p1p4 42059 xrpnf 45481 limsupre3lem 45730 fourierdlem25 46130 smfresal 46786 natlocalincr 46874 |
| Copyright terms: Public domain | W3C validator |