Home | Metamath
Proof Explorer Theorem List (p. 121 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nnindALT 12001* |
Principle of Mathematical Induction (inference schema). The last four
hypotheses give us the substitution instances we need; the first two are
the induction step and the basis.
This ALT version of nnind 12000 has a different hypothesis order. It may be easier to use with the Metamath program Proof Assistant, because "MM-PA> ASSIGN LAST" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> MINIMIZE_WITH nnind / MAYGROW". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) & ⊢ 𝜓 & ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜏) | ||
Theorem | nnindd 12002* | Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
⊢ (𝑥 = 1 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝜂) | ||
Theorem | nn1m1nn 12003 | Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.) |
⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) | ||
Theorem | nn1suc 12004* | If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜃)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ → 𝜒) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜃) | ||
Theorem | nnaddcl 12005 | Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ) | ||
Theorem | nnmulcl 12006 | Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) Remove dependency on ax-mulcom 10944 and ax-mulass 10946. (Revised by Steven Nguyen, 24-Sep-2022.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | ||
Theorem | nnmulcli 12007 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℕ | ||
Theorem | nnmtmip 12008 | "Minus times minus is plus, The reason for this we need not discuss." (W. H. Auden, as quoted in M. Guillen "Bridges to Infinity", p. 64, see also Metamath Book, section 1.1.1, p. 5) This statement, formalized to "The product of two negative integers is a positive integer", is proved by the following theorem, therefore it actually need not be discussed anymore. "The reason for this" is that (-𝐴 · -𝐵) = (𝐴 · 𝐵) for all complex numbers 𝐴 and 𝐵 because of mul2neg 11423, 𝐴 and 𝐵 are complex numbers because of nncn 11990, and (𝐴 · 𝐵) ∈ ℕ because of nnmulcl 12006. This also holds for positive reals, see rpmtmip 12763. Note that the opposites -𝐴 and -𝐵 of the positive integers 𝐴 and 𝐵 are negative integers. (Contributed by AV, 23-Dec-2022.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (-𝐴 · -𝐵) ∈ ℕ) | ||
Theorem | nn2ge 12009* | There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) | ||
Theorem | nnge1 12010 | A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | ||
Theorem | nngt1ne1 12011 | A positive integer is greater than one iff it is not equal to one. (Contributed by NM, 7-Oct-2004.) |
⊢ (𝐴 ∈ ℕ → (1 < 𝐴 ↔ 𝐴 ≠ 1)) | ||
Theorem | nnle1eq1 12012 | A positive integer is less than or equal to one iff it is equal to one. (Contributed by NM, 3-Apr-2005.) |
⊢ (𝐴 ∈ ℕ → (𝐴 ≤ 1 ↔ 𝐴 = 1)) | ||
Theorem | nngt0 12013 | A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | ||
Theorem | nnnlt1 12014 | A positive integer is not less than one. (Contributed by NM, 18-Jan-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℕ → ¬ 𝐴 < 1) | ||
Theorem | nnnle0 12015 | A positive integer is not less than or equal to zero. (Contributed by AV, 13-May-2020.) |
⊢ (𝐴 ∈ ℕ → ¬ 𝐴 ≤ 0) | ||
Theorem | nnne0 12016 | A positive integer is nonzero. See nnne0ALT 12020 for a shorter proof using ax-pre-mulgt0 10957. This proof avoids 0lt1 11506, and thus ax-pre-mulgt0 10957, by splitting ax-1ne0 10949 into the two separate cases 0 < 1 and 1 < 0. (Contributed by NM, 27-Sep-1999.) Remove dependency on ax-pre-mulgt0 10957. (Revised by Steven Nguyen, 30-Jan-2023.) |
⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
Theorem | nnneneg 12017 | No positive integer is equal to its negation. (Contributed by AV, 20-Jun-2023.) |
⊢ (𝐴 ∈ ℕ → 𝐴 ≠ -𝐴) | ||
Theorem | 0nnn 12018 | Zero is not a positive integer. (Contributed by NM, 25-Aug-1999.) Remove dependency on ax-pre-mulgt0 10957. (Revised by Steven Nguyen, 30-Jan-2023.) |
⊢ ¬ 0 ∈ ℕ | ||
Theorem | 0nnnALT 12019 | Alternate proof of 0nnn 12018, which requires ax-pre-mulgt0 10957 but is not based on nnne0 12016 (and which can therefore be used in nnne0ALT 12020). (Contributed by NM, 25-Aug-1999.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ¬ 0 ∈ ℕ | ||
Theorem | nnne0ALT 12020 | Alternate version of nnne0 12016. A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
Theorem | nngt0i 12021 | A positive integer is positive (inference version). (Contributed by NM, 17-Sep-1999.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ 0 < 𝐴 | ||
Theorem | nnne0i 12022 | A positive integer is nonzero (inference version). (Contributed by NM, 25-Aug-1999.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ≠ 0 | ||
Theorem | nndivre 12023 | The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) | ||
Theorem | nnrecre 12024 | The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008.) |
⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) | ||
Theorem | nnrecgt0 12025 | The reciprocal of a positive integer is positive. (Contributed by NM, 25-Aug-1999.) |
⊢ (𝐴 ∈ ℕ → 0 < (1 / 𝐴)) | ||
Theorem | nnsub 12026 | Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ)) | ||
Theorem | nnsubi 12027 | Subtraction of positive integers. (Contributed by NM, 19-Aug-2001.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ) | ||
Theorem | nndiv 12028* | Two ways to express "𝐴 divides 𝐵 " for positive integers. (Contributed by NM, 3-Feb-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℕ (𝐴 · 𝑥) = 𝐵 ↔ (𝐵 / 𝐴) ∈ ℕ)) | ||
Theorem | nndivtr 12029 | Transitive property of divisibility: if 𝐴 divides 𝐵 and 𝐵 divides 𝐶, then 𝐴 divides 𝐶. Typically, 𝐶 would be an integer, although the theorem holds for complex 𝐶. (Contributed by NM, 3-May-2005.) |
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ) | ||
Theorem | nnge1d 12030 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 1 ≤ 𝐴) | ||
Theorem | nngt0d 12031 | A positive integer is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
Theorem | nnne0d 12032 | A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
Theorem | nnrecred 12033 | The reciprocal of a positive integer is real. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) | ||
Theorem | nnaddcld 12034 | Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ) | ||
Theorem | nnmulcld 12035 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) | ||
Theorem | nndivred 12036 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) | ||
The decimal representation of numbers/integers is based on the decimal digits 0 through 9 (df-0 10887 through df-9 12052), which are explicitly defined in the following. Note that the numbers 0 and 1 are constants defined as primitives of the complex number axiom system (see df-0 10887 and df-1 10888). With the decimal constructor df-dec 12447, it is possible to easily express larger integers in base 10. See deccl 12461 and the theorems that follow it. See also 4001prm 16855 (4001 is prime) and the proof of bpos 26450. Note that the decimal constructor builds on the definitions in this section. Note: The number 10 will be represented by its digits using the decimal constructor only, i.e., by ;10. Therefore, only decimal digits are needed (as symbols) for the decimal representation of a number. Integers can also be exhibited as sums of powers of 10 (e.g., the number 103 can be expressed as ((;10↑2) + 3)) or as some other expression built from operations on the numbers 0 through 9. For example, the prime number 823541 can be expressed as (7↑7) − 2. Decimals can be expressed as ratios of integers, as in cos2bnd 15906. Most abstract math rarely requires numbers larger than 4. Even in Wiles' proof of Fermat's Last Theorem, the largest number used appears to be 12. | ||
Syntax | c2 12037 | Extend class notation to include the number 2. |
class 2 | ||
Syntax | c3 12038 | Extend class notation to include the number 3. |
class 3 | ||
Syntax | c4 12039 | Extend class notation to include the number 4. |
class 4 | ||
Syntax | c5 12040 | Extend class notation to include the number 5. |
class 5 | ||
Syntax | c6 12041 | Extend class notation to include the number 6. |
class 6 | ||
Syntax | c7 12042 | Extend class notation to include the number 7. |
class 7 | ||
Syntax | c8 12043 | Extend class notation to include the number 8. |
class 8 | ||
Syntax | c9 12044 | Extend class notation to include the number 9. |
class 9 | ||
Definition | df-2 12045 | Define the number 2. (Contributed by NM, 27-May-1999.) |
⊢ 2 = (1 + 1) | ||
Definition | df-3 12046 | Define the number 3. (Contributed by NM, 27-May-1999.) |
⊢ 3 = (2 + 1) | ||
Definition | df-4 12047 | Define the number 4. (Contributed by NM, 27-May-1999.) |
⊢ 4 = (3 + 1) | ||
Definition | df-5 12048 | Define the number 5. (Contributed by NM, 27-May-1999.) |
⊢ 5 = (4 + 1) | ||
Definition | df-6 12049 | Define the number 6. (Contributed by NM, 27-May-1999.) |
⊢ 6 = (5 + 1) | ||
Definition | df-7 12050 | Define the number 7. (Contributed by NM, 27-May-1999.) |
⊢ 7 = (6 + 1) | ||
Definition | df-8 12051 | Define the number 8. (Contributed by NM, 27-May-1999.) |
⊢ 8 = (7 + 1) | ||
Definition | df-9 12052 | Define the number 9. (Contributed by NM, 27-May-1999.) |
⊢ 9 = (8 + 1) | ||
Theorem | 0ne1 12053 | Zero is different from one (the commuted form is Axiom ax-1ne0 10949). (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 0 ≠ 1 | ||
Theorem | 1m1e0 12054 | One minus one equals zero. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ (1 − 1) = 0 | ||
Theorem | 2nn 12055 | 2 is a positive integer. (Contributed by NM, 20-Aug-2001.) |
⊢ 2 ∈ ℕ | ||
Theorem | 2re 12056 | The number 2 is real. (Contributed by NM, 27-May-1999.) |
⊢ 2 ∈ ℝ | ||
Theorem | 2cn 12057 | The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
⊢ 2 ∈ ℂ | ||
Theorem | 2cnALT 12058 | Alternate proof of 2cn 12057. Shorter but uses more axioms. Similar proofs are possible for 3cn 12063, ... , 9cn 12082. (Contributed by NM, 30-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 2 ∈ ℂ | ||
Theorem | 2ex 12059 | The number 2 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 2 ∈ V | ||
Theorem | 2cnd 12060 | The number 2 is a complex number, deduction form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (𝜑 → 2 ∈ ℂ) | ||
Theorem | 3nn 12061 | 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
⊢ 3 ∈ ℕ | ||
Theorem | 3re 12062 | The number 3 is real. (Contributed by NM, 27-May-1999.) |
⊢ 3 ∈ ℝ | ||
Theorem | 3cn 12063 | The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
⊢ 3 ∈ ℂ | ||
Theorem | 3ex 12064 | The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 3 ∈ V | ||
Theorem | 4nn 12065 | 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
⊢ 4 ∈ ℕ | ||
Theorem | 4re 12066 | The number 4 is real. (Contributed by NM, 27-May-1999.) |
⊢ 4 ∈ ℝ | ||
Theorem | 4cn 12067 | The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
⊢ 4 ∈ ℂ | ||
Theorem | 5nn 12068 | 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 5 ∈ ℕ | ||
Theorem | 5re 12069 | The number 5 is real. (Contributed by NM, 27-May-1999.) |
⊢ 5 ∈ ℝ | ||
Theorem | 5cn 12070 | The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
⊢ 5 ∈ ℂ | ||
Theorem | 6nn 12071 | 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 6 ∈ ℕ | ||
Theorem | 6re 12072 | The number 6 is real. (Contributed by NM, 27-May-1999.) |
⊢ 6 ∈ ℝ | ||
Theorem | 6cn 12073 | The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
⊢ 6 ∈ ℂ | ||
Theorem | 7nn 12074 | 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 7 ∈ ℕ | ||
Theorem | 7re 12075 | The number 7 is real. (Contributed by NM, 27-May-1999.) |
⊢ 7 ∈ ℝ | ||
Theorem | 7cn 12076 | The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
⊢ 7 ∈ ℂ | ||
Theorem | 8nn 12077 | 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
⊢ 8 ∈ ℕ | ||
Theorem | 8re 12078 | The number 8 is real. (Contributed by NM, 27-May-1999.) |
⊢ 8 ∈ ℝ | ||
Theorem | 8cn 12079 | The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
⊢ 8 ∈ ℂ | ||
Theorem | 9nn 12080 | 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
⊢ 9 ∈ ℕ | ||
Theorem | 9re 12081 | The number 9 is real. (Contributed by NM, 27-May-1999.) |
⊢ 9 ∈ ℝ | ||
Theorem | 9cn 12082 | The number 9 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
⊢ 9 ∈ ℂ | ||
Theorem | 0le0 12083 | Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ 0 ≤ 0 | ||
Theorem | 0le2 12084 | The number 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
⊢ 0 ≤ 2 | ||
Theorem | 2pos 12085 | The number 2 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 2 | ||
Theorem | 2ne0 12086 | The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.) |
⊢ 2 ≠ 0 | ||
Theorem | 3pos 12087 | The number 3 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 3 | ||
Theorem | 3ne0 12088 | The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
⊢ 3 ≠ 0 | ||
Theorem | 4pos 12089 | The number 4 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 4 | ||
Theorem | 4ne0 12090 | The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
⊢ 4 ≠ 0 | ||
Theorem | 5pos 12091 | The number 5 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 5 | ||
Theorem | 6pos 12092 | The number 6 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 6 | ||
Theorem | 7pos 12093 | The number 7 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 7 | ||
Theorem | 8pos 12094 | The number 8 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 8 | ||
Theorem | 9pos 12095 | The number 9 is positive. (Contributed by NM, 27-May-1999.) |
⊢ 0 < 9 | ||
This section includes specific theorems about one-digit natural numbers (membership, addition, subtraction, multiplication, division, ordering). | ||
Theorem | neg1cn 12096 | -1 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) |
⊢ -1 ∈ ℂ | ||
Theorem | neg1rr 12097 | -1 is a real number. (Contributed by David A. Wheeler, 5-Dec-2018.) |
⊢ -1 ∈ ℝ | ||
Theorem | neg1ne0 12098 | -1 is nonzero. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -1 ≠ 0 | ||
Theorem | neg1lt0 12099 | -1 is less than 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ -1 < 0 | ||
Theorem | negneg1e1 12100 | --1 is 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ --1 = 1 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |