![]() |
Metamath
Proof Explorer Theorem List (p. 121 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | divcan6 12001 | Cancellation of inverted fractions. (Contributed by NM, 28-Dec-2007.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 / 𝐵) · (𝐵 / 𝐴)) = 1) | ||
Theorem | divdiv32 12002 | Swap denominators in a division. (Contributed by NM, 2-Aug-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) | ||
Theorem | divcan7 12003 | Cancel equal divisors in a division. (Contributed by Jeff Hankins, 29-Sep-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) / (𝐵 / 𝐶)) = (𝐴 / 𝐵)) | ||
Theorem | dmdcan 12004 | Cancellation law for division and multiplication. (Contributed by Scott Fenton, 7-Jun-2013.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · (𝐶 / 𝐴)) = (𝐶 / 𝐵)) | ||
Theorem | divdiv1 12005 | Division into a fraction. (Contributed by NM, 31-Dec-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) | ||
Theorem | divdiv2 12006 | Division by a fraction. (Contributed by NM, 27-Dec-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵)) | ||
Theorem | recdiv2 12007 | Division into a reciprocal. (Contributed by NM, 19-Oct-2007.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((1 / 𝐴) / 𝐵) = (1 / (𝐴 · 𝐵))) | ||
Theorem | ddcan 12008 | Cancellation in a double division. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴 / (𝐴 / 𝐵)) = 𝐵) | ||
Theorem | divadddiv 12009 | Addition of two ratios. Theorem I.13 of [Apostol] p. 18. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 2-May-2016.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) + (𝐵 / 𝐷)) = (((𝐴 · 𝐷) + (𝐵 · 𝐶)) / (𝐶 · 𝐷))) | ||
Theorem | divsubdiv 12010 | Subtraction of two ratios. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐶) − (𝐵 / 𝐷)) = (((𝐴 · 𝐷) − (𝐵 · 𝐶)) / (𝐶 · 𝐷))) | ||
Theorem | conjmul 12011 | Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 12-Nov-2006.) |
⊢ (((𝑃 ∈ ℂ ∧ 𝑃 ≠ 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 ≠ 0)) → (((1 / 𝑃) + (1 / 𝑄)) = 1 ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1)) | ||
Theorem | rereccl 12012 | Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) | ||
Theorem | redivcl 12013 | Closure law for division of reals. (Contributed by NM, 27-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | ||
Theorem | eqneg 12014 | A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℂ → (𝐴 = -𝐴 ↔ 𝐴 = 0)) | ||
Theorem | eqnegd 12015 | A complex number equals its negative iff it is zero. Deduction form of eqneg 12014. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 = -𝐴 ↔ 𝐴 = 0)) | ||
Theorem | eqnegad 12016 | If a complex number equals its own negative, it is zero. One-way deduction form of eqneg 12014. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = -𝐴) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
Theorem | div2neg 12017 | Quotient of two negatives. (Contributed by Paul Chapman, 10-Nov-2012.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (-𝐴 / -𝐵) = (𝐴 / 𝐵)) | ||
Theorem | divneg2 12018 | Move negative sign inside of a division. (Contributed by Mario Carneiro, 15-Sep-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → -(𝐴 / 𝐵) = (𝐴 / -𝐵)) | ||
Theorem | recclzi 12019 | Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ≠ 0 → (1 / 𝐴) ∈ ℂ) | ||
Theorem | recne0zi 12020 | The reciprocal of a nonzero number is nonzero. (Contributed by NM, 14-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ≠ 0 → (1 / 𝐴) ≠ 0) | ||
Theorem | recidzi 12021 | Multiplication of a number and its reciprocal. (Contributed by NM, 14-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ≠ 0 → (𝐴 · (1 / 𝐴)) = 1) | ||
Theorem | div1i 12022 | A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 / 1) = 𝐴 | ||
Theorem | eqnegi 12023 | A number equal to its negative is zero. (Contributed by NM, 29-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 = -𝐴 ↔ 𝐴 = 0) | ||
Theorem | reccli 12024 | Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ (1 / 𝐴) ∈ ℂ | ||
Theorem | recidi 12025 | Multiplication of a number and its reciprocal. (Contributed by NM, 9-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ (𝐴 · (1 / 𝐴)) = 1 | ||
Theorem | recreci 12026 | A number is equal to the reciprocal of its reciprocal. Theorem I.10 of [Apostol] p. 18. (Contributed by NM, 9-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ (1 / (1 / 𝐴)) = 𝐴 | ||
Theorem | dividi 12027 | A number divided by itself is one. (Contributed by NM, 9-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ (𝐴 / 𝐴) = 1 | ||
Theorem | div0i 12028 | Division into zero is zero. (Contributed by NM, 12-Aug-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ (0 / 𝐴) = 0 | ||
Theorem | divclzi 12029 | Closure law for division. (Contributed by NM, 7-May-1999.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℂ) | ||
Theorem | divcan1zi 12030 | A cancellation law for division. (Contributed by NM, 2-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) | ||
Theorem | divcan2zi 12031 | A cancellation law for division. (Contributed by NM, 10-Aug-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → (𝐵 · (𝐴 / 𝐵)) = 𝐴) | ||
Theorem | divreczi 12032 | Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by NM, 11-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) | ||
Theorem | divcan3zi 12033 | A cancellation law for division. (Eliminates a hypothesis of divcan3i 12040 with the weak deduction theorem.) (Contributed by NM, 3-Feb-2004.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → ((𝐵 · 𝐴) / 𝐵) = 𝐴) | ||
Theorem | divcan4zi 12034 | A cancellation law for division. (Contributed by NM, 12-Oct-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → ((𝐴 · 𝐵) / 𝐵) = 𝐴) | ||
Theorem | rec11i 12035 | Reciprocal is one-to-one. (Contributed by NM, 16-Sep-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) → ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | divcli 12036 | Closure law for division. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ (𝐴 / 𝐵) ∈ ℂ | ||
Theorem | divcan2i 12037 | A cancellation law for division. (Contributed by NM, 9-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ (𝐵 · (𝐴 / 𝐵)) = 𝐴 | ||
Theorem | divcan1i 12038 | A cancellation law for division. (Contributed by NM, 18-May-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵) · 𝐵) = 𝐴 | ||
Theorem | divreci 12039 | Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by NM, 9-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)) | ||
Theorem | divcan3i 12040 | A cancellation law for division. (Contributed by NM, 16-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ ((𝐵 · 𝐴) / 𝐵) = 𝐴 | ||
Theorem | divcan4i 12041 | A cancellation law for division. (Contributed by NM, 18-May-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ ((𝐴 · 𝐵) / 𝐵) = 𝐴 | ||
Theorem | divne0i 12042 | The ratio of nonzero numbers is nonzero. (Contributed by NM, 9-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 ≠ 0 & ⊢ 𝐵 ≠ 0 ⇒ ⊢ (𝐴 / 𝐵) ≠ 0 | ||
Theorem | rec11ii 12043 | Reciprocal is one-to-one. (Contributed by NM, 16-Sep-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 ≠ 0 & ⊢ 𝐵 ≠ 0 ⇒ ⊢ ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵) | ||
Theorem | divasszi 12044 | An associative law for division. (Contributed by NM, 12-Aug-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐶 ≠ 0 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) | ||
Theorem | divmulzi 12045 | Relationship between division and multiplication. (Contributed by NM, 8-May-1999.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) | ||
Theorem | divdirzi 12046 | Distribution of division over addition. (Contributed by NM, 31-Jul-2004.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐶 ≠ 0 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) | ||
Theorem | divdiv23zi 12047 | Swap denominators in a division. (Contributed by NM, 15-Sep-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐵 ≠ 0 ∧ 𝐶 ≠ 0) → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) | ||
Theorem | divmuli 12048 | Relationship between division and multiplication. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 17-Feb-2014.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴) | ||
Theorem | divdiv32i 12049 | Swap denominators in a division. (Contributed by NM, 15-Sep-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐵 ≠ 0 & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵) | ||
Theorem | divassi 12050 | An associative law for division. (Contributed by NM, 15-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)) | ||
Theorem | divdiri 12051 | Distribution of division over addition. (Contributed by NM, 16-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)) | ||
Theorem | div23i 12052 | A commutative/associative law for division. (Contributed by NM, 3-Sep-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵) | ||
Theorem | div11i 12053 | One-to-one relationship for division. (Contributed by NM, 20-Aug-2001.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵) | ||
Theorem | divmuldivi 12054 | Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 16-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 ≠ 0 & ⊢ 𝐷 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) | ||
Theorem | divmul13i 12055 | Swap denominators of two ratios. (Contributed by NM, 6-Aug-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 ≠ 0 & ⊢ 𝐷 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷)) | ||
Theorem | divadddivi 12056 | Addition of two ratios. Theorem I.13 of [Apostol] p. 18. (Contributed by NM, 21-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 ≠ 0 & ⊢ 𝐷 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷)) | ||
Theorem | divdivdivi 12057 | Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by NM, 22-Feb-1995.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ & ⊢ 𝐵 ≠ 0 & ⊢ 𝐷 ≠ 0 & ⊢ 𝐶 ≠ 0 ⇒ ⊢ ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) | ||
Theorem | rerecclzi 12058 | Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐴 ≠ 0 → (1 / 𝐴) ∈ ℝ) | ||
Theorem | rereccli 12059 | Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ (1 / 𝐴) ∈ ℝ | ||
Theorem | redivclzi 12060 | Closure law for division of reals. (Contributed by NM, 9-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐵 ≠ 0 → (𝐴 / 𝐵) ∈ ℝ) | ||
Theorem | redivcli 12061 | Closure law for division of reals. (Contributed by NM, 9-May-1999.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐵 ≠ 0 ⇒ ⊢ (𝐴 / 𝐵) ∈ ℝ | ||
Theorem | div1d 12062 | A number divided by 1 is itself. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 / 1) = 𝐴) | ||
Theorem | reccld 12063 | Closure law for reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) | ||
Theorem | recne0d 12064 | The reciprocal of a nonzero number is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (1 / 𝐴) ≠ 0) | ||
Theorem | recidd 12065 | Multiplication of a number and its reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 · (1 / 𝐴)) = 1) | ||
Theorem | recid2d 12066 | Multiplication of a number and its reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴) · 𝐴) = 1) | ||
Theorem | recrecd 12067 | A number is equal to the reciprocal of its reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (1 / (1 / 𝐴)) = 𝐴) | ||
Theorem | dividd 12068 | A number divided by itself is one. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐴) = 1) | ||
Theorem | div0d 12069 | Division into zero is zero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (0 / 𝐴) = 0) | ||
Theorem | divcld 12070 | Closure law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℂ) | ||
Theorem | divcan1d 12071 | A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) | ||
Theorem | divcan2d 12072 | A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐵 · (𝐴 / 𝐵)) = 𝐴) | ||
Theorem | divrecd 12073 | Relationship between division and reciprocal. Theorem I.9 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) | ||
Theorem | divrec2d 12074 | Relationship between division and reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | ||
Theorem | divcan3d 12075 | A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐴) / 𝐵) = 𝐴) | ||
Theorem | divcan4d 12076 | A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐵) = 𝐴) | ||
Theorem | diveq0d 12077 | A ratio is zero iff the numerator is zero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → (𝐴 / 𝐵) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
Theorem | diveq1d 12078 | Equality in terms of unit ratio. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → (𝐴 / 𝐵) = 1) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | diveq1ad 12079 | The quotient of two complex numbers is one iff they are equal. Deduction form of diveq1 11979. Generalization of diveq1d 12078. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵)) | ||
Theorem | diveq0ad 12080 | A fraction of complex numbers is zero iff its numerator is. Deduction form of diveq0 11959. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0)) | ||
Theorem | divne1d 12081 | If two complex numbers are unequal, their quotient is not one. Contrapositive of diveq1d 12078. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 1) | ||
Theorem | divne0bd 12082 | A ratio is zero iff the numerator is zero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 ≠ 0 ↔ (𝐴 / 𝐵) ≠ 0)) | ||
Theorem | divnegd 12083 | Move negative sign inside of a division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) | ||
Theorem | divneg2d 12084 | Move negative sign inside of a division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → -(𝐴 / 𝐵) = (𝐴 / -𝐵)) | ||
Theorem | div2negd 12085 | Quotient of two negatives. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (-𝐴 / -𝐵) = (𝐴 / 𝐵)) | ||
Theorem | divne0d 12086 | The ratio of nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ≠ 0) | ||
Theorem | recdivd 12087 | The reciprocal of a ratio. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) | ||
Theorem | recdiv2d 12088 | Division into a reciprocal. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((1 / 𝐴) / 𝐵) = (1 / (𝐴 · 𝐵))) | ||
Theorem | divcan6d 12089 | Cancellation of inverted fractions. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐴)) = 1) | ||
Theorem | ddcand 12090 | Cancellation in a double division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → (𝐴 / (𝐴 / 𝐵)) = 𝐵) | ||
Theorem | rec11d 12091 | Reciprocal is one-to-one. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → (1 / 𝐴) = (1 / 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | divmuld 12092 | Relationship between division and multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) | ||
Theorem | div32d 12093 | A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵))) | ||
Theorem | div13d 12094 | A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴)) | ||
Theorem | divdiv32d 12095 | Swap denominators in a division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) | ||
Theorem | divcan5d 12096 | Cancellation of common factor in a ratio. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵)) | ||
Theorem | divcan5rd 12097 | Cancellation of common factor in a ratio. (Contributed by Mario Carneiro, 1-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = (𝐴 / 𝐵)) | ||
Theorem | divcan7d 12098 | Cancel equal divisors in a division. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐶) / (𝐵 / 𝐶)) = (𝐴 / 𝐵)) | ||
Theorem | dmdcand 12099 | Cancellation law for division and multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐵 / 𝐶) · (𝐴 / 𝐵)) = (𝐴 / 𝐶)) | ||
Theorem | dmdcan2d 12100 | Cancellation law for division and multiplication. (Contributed by David Moews, 28-Feb-2017.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 0) & ⊢ (𝜑 → 𝐶 ≠ 0) ⇒ ⊢ (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐶)) = (𝐴 / 𝐶)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |