MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efsubm Structured version   Visualization version   GIF version

Theorem efsubm 26482
Description: The image of a subgroup of the group +, under the exponential function of a scaled complex number is a submonoid of the multiplicative group of fld. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
efabl.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
efabl.2 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
efabl.3 (𝜑𝐴 ∈ ℂ)
efabl.4 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
Assertion
Ref Expression
efsubm (𝜑 → ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥

Proof of Theorem efsubm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eff 15983 . . . . . 6 exp:ℂ⟶ℂ
21a1i 11 . . . . 5 ((𝜑𝑥𝑋) → exp:ℂ⟶ℂ)
3 efabl.3 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
43adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
5 efabl.4 . . . . . . . 8 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
6 cnfldbas 21290 . . . . . . . . 9 ℂ = (Base‘ℂfld)
76subgss 19035 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
85, 7syl 17 . . . . . . 7 (𝜑𝑋 ⊆ ℂ)
98sselda 3929 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
104, 9mulcld 11127 . . . . 5 ((𝜑𝑥𝑋) → (𝐴 · 𝑥) ∈ ℂ)
112, 10ffvelcdmd 7013 . . . 4 ((𝜑𝑥𝑋) → (exp‘(𝐴 · 𝑥)) ∈ ℂ)
1211ralrimiva 3124 . . 3 (𝜑 → ∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ)
13 efabl.1 . . . 4 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
1413rnmptss 7051 . . 3 (∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ → ran 𝐹 ⊆ ℂ)
1512, 14syl 17 . 2 (𝜑 → ran 𝐹 ⊆ ℂ)
163mul01d 11307 . . . . 5 (𝜑 → (𝐴 · 0) = 0)
1716fveq2d 6821 . . . 4 (𝜑 → (exp‘(𝐴 · 0)) = (exp‘0))
18 ef0 15993 . . . 4 (exp‘0) = 1
1917, 18eqtrdi 2782 . . 3 (𝜑 → (exp‘(𝐴 · 0)) = 1)
20 cnfld0 21324 . . . . . 6 0 = (0g‘ℂfld)
2120subg0cl 19042 . . . . 5 (𝑋 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑋)
225, 21syl 17 . . . 4 (𝜑 → 0 ∈ 𝑋)
23 fvex 6830 . . . 4 (exp‘(𝐴 · 0)) ∈ V
24 oveq2 7349 . . . . . 6 (𝑥 = 0 → (𝐴 · 𝑥) = (𝐴 · 0))
2524fveq2d 6821 . . . . 5 (𝑥 = 0 → (exp‘(𝐴 · 𝑥)) = (exp‘(𝐴 · 0)))
2613, 25elrnmpt1s 5894 . . . 4 ((0 ∈ 𝑋 ∧ (exp‘(𝐴 · 0)) ∈ V) → (exp‘(𝐴 · 0)) ∈ ran 𝐹)
2722, 23, 26sylancl 586 . . 3 (𝜑 → (exp‘(𝐴 · 0)) ∈ ran 𝐹)
2819, 27eqeltrrd 2832 . 2 (𝜑 → 1 ∈ ran 𝐹)
29 efabl.2 . . . . . . . . 9 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
3013, 29, 3, 5efabl 26481 . . . . . . . 8 (𝜑𝐺 ∈ Abel)
31 ablgrp 19692 . . . . . . . 8 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3230, 31syl 17 . . . . . . 7 (𝜑𝐺 ∈ Grp)
33323ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝐺 ∈ Grp)
34 simp2 1137 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑥 ∈ ran 𝐹)
35 eqid 2731 . . . . . . . . . . 11 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
3635, 6mgpbas 20058 . . . . . . . . . 10 ℂ = (Base‘(mulGrp‘ℂfld))
3729, 36ressbas2 17144 . . . . . . . . 9 (ran 𝐹 ⊆ ℂ → ran 𝐹 = (Base‘𝐺))
3815, 37syl 17 . . . . . . . 8 (𝜑 → ran 𝐹 = (Base‘𝐺))
39383ad2ant1 1133 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → ran 𝐹 = (Base‘𝐺))
4034, 39eleqtrd 2833 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑥 ∈ (Base‘𝐺))
41 simp3 1138 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
4241, 39eleqtrd 2833 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑦 ∈ (Base‘𝐺))
43 eqid 2731 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
44 eqid 2731 . . . . . . 7 (+g𝐺) = (+g𝐺)
4543, 44grpcl 18849 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
4633, 40, 42, 45syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
475mptexd 7153 . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) ∈ V)
4813, 47eqeltrid 2835 . . . . . . . 8 (𝜑𝐹 ∈ V)
49 rnexg 7827 . . . . . . . 8 (𝐹 ∈ V → ran 𝐹 ∈ V)
50 cnfldmul 21294 . . . . . . . . . 10 · = (.r‘ℂfld)
5135, 50mgpplusg 20057 . . . . . . . . 9 · = (+g‘(mulGrp‘ℂfld))
5229, 51ressplusg 17190 . . . . . . . 8 (ran 𝐹 ∈ V → · = (+g𝐺))
5348, 49, 523syl 18 . . . . . . 7 (𝜑 → · = (+g𝐺))
54533ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → · = (+g𝐺))
5554oveqd 7358 . . . . 5 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥 · 𝑦) = (𝑥(+g𝐺)𝑦))
5646, 55, 393eltr4d 2846 . . . 4 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥 · 𝑦) ∈ ran 𝐹)
57563expb 1120 . . 3 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹)) → (𝑥 · 𝑦) ∈ ran 𝐹)
5857ralrimivva 3175 . 2 (𝜑 → ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹)
59 cnring 21322 . . 3 fld ∈ Ring
6035ringmgp 20152 . . 3 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
61 cnfld1 21325 . . . . 5 1 = (1r‘ℂfld)
6235, 61ringidval 20096 . . . 4 1 = (0g‘(mulGrp‘ℂfld))
6336, 62, 51issubm 18706 . . 3 ((mulGrp‘ℂfld) ∈ Mnd → (ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ran 𝐹 ⊆ ℂ ∧ 1 ∈ ran 𝐹 ∧ ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹)))
6459, 60, 63mp2b 10 . 2 (ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ran 𝐹 ⊆ ℂ ∧ 1 ∈ ran 𝐹 ∧ ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹))
6515, 28, 58, 64syl3anbrc 1344 1 (𝜑 → ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897  cmpt 5167  ran crn 5612  wf 6472  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  1c1 11002   · cmul 11006  expce 15963  Basecbs 17115  s cress 17136  +gcplusg 17156  Mndcmnd 18637  SubMndcsubmnd 18685  Grpcgrp 18841  SubGrpcsubg 19028  Abelcabl 19688  mulGrpcmgp 20053  Ringcrg 20146  fldccnfld 21286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080  ax-mulf 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-rp 12886  df-ico 13246  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-subg 19031  df-cmn 19689  df-abl 19690  df-mgp 20054  df-ur 20095  df-ring 20148  df-cring 20149  df-cnfld 21287
This theorem is referenced by:  circsubm  26484
  Copyright terms: Public domain W3C validator