MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efsubm Structured version   Visualization version   GIF version

Theorem efsubm 25143
Description: The image of a subgroup of the group +, under the exponential function of a scaled complex number is a submonoid of the multiplicative group of fld. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
efabl.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
efabl.2 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
efabl.3 (𝜑𝐴 ∈ ℂ)
efabl.4 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
Assertion
Ref Expression
efsubm (𝜑 → ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥

Proof of Theorem efsubm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eff 15427 . . . . . 6 exp:ℂ⟶ℂ
21a1i 11 . . . . 5 ((𝜑𝑥𝑋) → exp:ℂ⟶ℂ)
3 efabl.3 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
43adantr 484 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
5 efabl.4 . . . . . . . 8 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
6 cnfldbas 20095 . . . . . . . . 9 ℂ = (Base‘ℂfld)
76subgss 18272 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
85, 7syl 17 . . . . . . 7 (𝜑𝑋 ⊆ ℂ)
98sselda 3915 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
104, 9mulcld 10650 . . . . 5 ((𝜑𝑥𝑋) → (𝐴 · 𝑥) ∈ ℂ)
112, 10ffvelrnd 6829 . . . 4 ((𝜑𝑥𝑋) → (exp‘(𝐴 · 𝑥)) ∈ ℂ)
1211ralrimiva 3149 . . 3 (𝜑 → ∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ)
13 efabl.1 . . . 4 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
1413rnmptss 6863 . . 3 (∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ → ran 𝐹 ⊆ ℂ)
1512, 14syl 17 . 2 (𝜑 → ran 𝐹 ⊆ ℂ)
163mul01d 10828 . . . . 5 (𝜑 → (𝐴 · 0) = 0)
1716fveq2d 6649 . . . 4 (𝜑 → (exp‘(𝐴 · 0)) = (exp‘0))
18 ef0 15436 . . . 4 (exp‘0) = 1
1917, 18eqtrdi 2849 . . 3 (𝜑 → (exp‘(𝐴 · 0)) = 1)
20 cnfld0 20115 . . . . . 6 0 = (0g‘ℂfld)
2120subg0cl 18279 . . . . 5 (𝑋 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑋)
225, 21syl 17 . . . 4 (𝜑 → 0 ∈ 𝑋)
23 fvex 6658 . . . 4 (exp‘(𝐴 · 0)) ∈ V
24 oveq2 7143 . . . . . 6 (𝑥 = 0 → (𝐴 · 𝑥) = (𝐴 · 0))
2524fveq2d 6649 . . . . 5 (𝑥 = 0 → (exp‘(𝐴 · 𝑥)) = (exp‘(𝐴 · 0)))
2613, 25elrnmpt1s 5793 . . . 4 ((0 ∈ 𝑋 ∧ (exp‘(𝐴 · 0)) ∈ V) → (exp‘(𝐴 · 0)) ∈ ran 𝐹)
2722, 23, 26sylancl 589 . . 3 (𝜑 → (exp‘(𝐴 · 0)) ∈ ran 𝐹)
2819, 27eqeltrrd 2891 . 2 (𝜑 → 1 ∈ ran 𝐹)
29 efabl.2 . . . . . . . . 9 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
3013, 29, 3, 5efabl 25142 . . . . . . . 8 (𝜑𝐺 ∈ Abel)
31 ablgrp 18903 . . . . . . . 8 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3230, 31syl 17 . . . . . . 7 (𝜑𝐺 ∈ Grp)
33323ad2ant1 1130 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝐺 ∈ Grp)
34 simp2 1134 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑥 ∈ ran 𝐹)
35 eqid 2798 . . . . . . . . . . 11 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
3635, 6mgpbas 19238 . . . . . . . . . 10 ℂ = (Base‘(mulGrp‘ℂfld))
3729, 36ressbas2 16547 . . . . . . . . 9 (ran 𝐹 ⊆ ℂ → ran 𝐹 = (Base‘𝐺))
3815, 37syl 17 . . . . . . . 8 (𝜑 → ran 𝐹 = (Base‘𝐺))
39383ad2ant1 1130 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → ran 𝐹 = (Base‘𝐺))
4034, 39eleqtrd 2892 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑥 ∈ (Base‘𝐺))
41 simp3 1135 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
4241, 39eleqtrd 2892 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑦 ∈ (Base‘𝐺))
43 eqid 2798 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
44 eqid 2798 . . . . . . 7 (+g𝐺) = (+g𝐺)
4543, 44grpcl 18103 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
4633, 40, 42, 45syl3anc 1368 . . . . 5 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
475mptexd 6964 . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) ∈ V)
4813, 47eqeltrid 2894 . . . . . . . 8 (𝜑𝐹 ∈ V)
49 rnexg 7595 . . . . . . . 8 (𝐹 ∈ V → ran 𝐹 ∈ V)
50 cnfldmul 20097 . . . . . . . . . 10 · = (.r‘ℂfld)
5135, 50mgpplusg 19236 . . . . . . . . 9 · = (+g‘(mulGrp‘ℂfld))
5229, 51ressplusg 16604 . . . . . . . 8 (ran 𝐹 ∈ V → · = (+g𝐺))
5348, 49, 523syl 18 . . . . . . 7 (𝜑 → · = (+g𝐺))
54533ad2ant1 1130 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → · = (+g𝐺))
5554oveqd 7152 . . . . 5 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥 · 𝑦) = (𝑥(+g𝐺)𝑦))
5646, 55, 393eltr4d 2905 . . . 4 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥 · 𝑦) ∈ ran 𝐹)
57563expb 1117 . . 3 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹)) → (𝑥 · 𝑦) ∈ ran 𝐹)
5857ralrimivva 3156 . 2 (𝜑 → ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹)
59 cnring 20113 . . 3 fld ∈ Ring
6035ringmgp 19296 . . 3 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
61 cnfld1 20116 . . . . 5 1 = (1r‘ℂfld)
6235, 61ringidval 19246 . . . 4 1 = (0g‘(mulGrp‘ℂfld))
6336, 62, 51issubm 17960 . . 3 ((mulGrp‘ℂfld) ∈ Mnd → (ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ran 𝐹 ⊆ ℂ ∧ 1 ∈ ran 𝐹 ∧ ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹)))
6459, 60, 63mp2b 10 . 2 (ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ran 𝐹 ⊆ ℂ ∧ 1 ∈ ran 𝐹 ∧ ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹))
6515, 28, 58, 64syl3anbrc 1340 1 (𝜑 → ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881  cmpt 5110  ran crn 5520  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   · cmul 10531  expce 15407  Basecbs 16475  s cress 16476  +gcplusg 16557  Mndcmnd 17903  SubMndcsubmnd 17947  Grpcgrp 18095  SubGrpcsubg 18265  Abelcabl 18899  mulGrpcmgp 19232  Ringcrg 19290  fldccnfld 20091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-subg 18268  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-cnfld 20092
This theorem is referenced by:  circsubm  25145
  Copyright terms: Public domain W3C validator