Step | Hyp | Ref
| Expression |
1 | | eff 16024 |
. . . . . 6
β’
exp:ββΆβ |
2 | 1 | a1i 11 |
. . . . 5
β’ ((π β§ π₯ β π) β
exp:ββΆβ) |
3 | | efabl.3 |
. . . . . . 7
β’ (π β π΄ β β) |
4 | 3 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β π) β π΄ β β) |
5 | | efabl.4 |
. . . . . . . 8
β’ (π β π β
(SubGrpββfld)) |
6 | | cnfldbas 20947 |
. . . . . . . . 9
β’ β =
(Baseββfld) |
7 | 6 | subgss 19006 |
. . . . . . . 8
β’ (π β
(SubGrpββfld) β π β β) |
8 | 5, 7 | syl 17 |
. . . . . . 7
β’ (π β π β β) |
9 | 8 | sselda 3982 |
. . . . . 6
β’ ((π β§ π₯ β π) β π₯ β β) |
10 | 4, 9 | mulcld 11233 |
. . . . 5
β’ ((π β§ π₯ β π) β (π΄ Β· π₯) β β) |
11 | 2, 10 | ffvelcdmd 7087 |
. . . 4
β’ ((π β§ π₯ β π) β (expβ(π΄ Β· π₯)) β β) |
12 | 11 | ralrimiva 3146 |
. . 3
β’ (π β βπ₯ β π (expβ(π΄ Β· π₯)) β β) |
13 | | efabl.1 |
. . . 4
β’ πΉ = (π₯ β π β¦ (expβ(π΄ Β· π₯))) |
14 | 13 | rnmptss 7121 |
. . 3
β’
(βπ₯ β
π (expβ(π΄ Β· π₯)) β β β ran πΉ β
β) |
15 | 12, 14 | syl 17 |
. 2
β’ (π β ran πΉ β β) |
16 | 3 | mul01d 11412 |
. . . . 5
β’ (π β (π΄ Β· 0) = 0) |
17 | 16 | fveq2d 6895 |
. . . 4
β’ (π β (expβ(π΄ Β· 0)) =
(expβ0)) |
18 | | ef0 16033 |
. . . 4
β’
(expβ0) = 1 |
19 | 17, 18 | eqtrdi 2788 |
. . 3
β’ (π β (expβ(π΄ Β· 0)) =
1) |
20 | | cnfld0 20968 |
. . . . . 6
β’ 0 =
(0gββfld) |
21 | 20 | subg0cl 19013 |
. . . . 5
β’ (π β
(SubGrpββfld) β 0 β π) |
22 | 5, 21 | syl 17 |
. . . 4
β’ (π β 0 β π) |
23 | | fvex 6904 |
. . . 4
β’
(expβ(π΄
Β· 0)) β V |
24 | | oveq2 7416 |
. . . . . 6
β’ (π₯ = 0 β (π΄ Β· π₯) = (π΄ Β· 0)) |
25 | 24 | fveq2d 6895 |
. . . . 5
β’ (π₯ = 0 β (expβ(π΄ Β· π₯)) = (expβ(π΄ Β· 0))) |
26 | 13, 25 | elrnmpt1s 5956 |
. . . 4
β’ ((0
β π β§
(expβ(π΄ Β· 0))
β V) β (expβ(π΄ Β· 0)) β ran πΉ) |
27 | 22, 23, 26 | sylancl 586 |
. . 3
β’ (π β (expβ(π΄ Β· 0)) β ran πΉ) |
28 | 19, 27 | eqeltrrd 2834 |
. 2
β’ (π β 1 β ran πΉ) |
29 | | efabl.2 |
. . . . . . . . 9
β’ πΊ =
((mulGrpββfld) βΎs ran πΉ) |
30 | 13, 29, 3, 5 | efabl 26058 |
. . . . . . . 8
β’ (π β πΊ β Abel) |
31 | | ablgrp 19652 |
. . . . . . . 8
β’ (πΊ β Abel β πΊ β Grp) |
32 | 30, 31 | syl 17 |
. . . . . . 7
β’ (π β πΊ β Grp) |
33 | 32 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π β§ π₯ β ran πΉ β§ π¦ β ran πΉ) β πΊ β Grp) |
34 | | simp2 1137 |
. . . . . . 7
β’ ((π β§ π₯ β ran πΉ β§ π¦ β ran πΉ) β π₯ β ran πΉ) |
35 | | eqid 2732 |
. . . . . . . . . . 11
β’
(mulGrpββfld) =
(mulGrpββfld) |
36 | 35, 6 | mgpbas 19992 |
. . . . . . . . . 10
β’ β =
(Baseβ(mulGrpββfld)) |
37 | 29, 36 | ressbas2 17181 |
. . . . . . . . 9
β’ (ran
πΉ β β β
ran πΉ = (BaseβπΊ)) |
38 | 15, 37 | syl 17 |
. . . . . . . 8
β’ (π β ran πΉ = (BaseβπΊ)) |
39 | 38 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π₯ β ran πΉ β§ π¦ β ran πΉ) β ran πΉ = (BaseβπΊ)) |
40 | 34, 39 | eleqtrd 2835 |
. . . . . 6
β’ ((π β§ π₯ β ran πΉ β§ π¦ β ran πΉ) β π₯ β (BaseβπΊ)) |
41 | | simp3 1138 |
. . . . . . 7
β’ ((π β§ π₯ β ran πΉ β§ π¦ β ran πΉ) β π¦ β ran πΉ) |
42 | 41, 39 | eleqtrd 2835 |
. . . . . 6
β’ ((π β§ π₯ β ran πΉ β§ π¦ β ran πΉ) β π¦ β (BaseβπΊ)) |
43 | | eqid 2732 |
. . . . . . 7
β’
(BaseβπΊ) =
(BaseβπΊ) |
44 | | eqid 2732 |
. . . . . . 7
β’
(+gβπΊ) = (+gβπΊ) |
45 | 43, 44 | grpcl 18826 |
. . . . . 6
β’ ((πΊ β Grp β§ π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ)) β (π₯(+gβπΊ)π¦) β (BaseβπΊ)) |
46 | 33, 40, 42, 45 | syl3anc 1371 |
. . . . 5
β’ ((π β§ π₯ β ran πΉ β§ π¦ β ran πΉ) β (π₯(+gβπΊ)π¦) β (BaseβπΊ)) |
47 | 5 | mptexd 7225 |
. . . . . . . . 9
β’ (π β (π₯ β π β¦ (expβ(π΄ Β· π₯))) β V) |
48 | 13, 47 | eqeltrid 2837 |
. . . . . . . 8
β’ (π β πΉ β V) |
49 | | rnexg 7894 |
. . . . . . . 8
β’ (πΉ β V β ran πΉ β V) |
50 | | cnfldmul 20949 |
. . . . . . . . . 10
β’ Β·
= (.rββfld) |
51 | 35, 50 | mgpplusg 19990 |
. . . . . . . . 9
β’ Β·
= (+gβ(mulGrpββfld)) |
52 | 29, 51 | ressplusg 17234 |
. . . . . . . 8
β’ (ran
πΉ β V β Β·
= (+gβπΊ)) |
53 | 48, 49, 52 | 3syl 18 |
. . . . . . 7
β’ (π β Β· =
(+gβπΊ)) |
54 | 53 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π β§ π₯ β ran πΉ β§ π¦ β ran πΉ) β Β· =
(+gβπΊ)) |
55 | 54 | oveqd 7425 |
. . . . 5
β’ ((π β§ π₯ β ran πΉ β§ π¦ β ran πΉ) β (π₯ Β· π¦) = (π₯(+gβπΊ)π¦)) |
56 | 46, 55, 39 | 3eltr4d 2848 |
. . . 4
β’ ((π β§ π₯ β ran πΉ β§ π¦ β ran πΉ) β (π₯ Β· π¦) β ran πΉ) |
57 | 56 | 3expb 1120 |
. . 3
β’ ((π β§ (π₯ β ran πΉ β§ π¦ β ran πΉ)) β (π₯ Β· π¦) β ran πΉ) |
58 | 57 | ralrimivva 3200 |
. 2
β’ (π β βπ₯ β ran πΉβπ¦ β ran πΉ(π₯ Β· π¦) β ran πΉ) |
59 | | cnring 20966 |
. . 3
β’
βfld β Ring |
60 | 35 | ringmgp 20061 |
. . 3
β’
(βfld β Ring β
(mulGrpββfld) β Mnd) |
61 | | cnfld1 20969 |
. . . . 5
β’ 1 =
(1rββfld) |
62 | 35, 61 | ringidval 20005 |
. . . 4
β’ 1 =
(0gβ(mulGrpββfld)) |
63 | 36, 62, 51 | issubm 18683 |
. . 3
β’
((mulGrpββfld) β Mnd β (ran πΉ β
(SubMndβ(mulGrpββfld)) β (ran πΉ β β β§ 1 β
ran πΉ β§ βπ₯ β ran πΉβπ¦ β ran πΉ(π₯ Β· π¦) β ran πΉ))) |
64 | 59, 60, 63 | mp2b 10 |
. 2
β’ (ran
πΉ β
(SubMndβ(mulGrpββfld)) β (ran πΉ β β β§ 1 β
ran πΉ β§ βπ₯ β ran πΉβπ¦ β ran πΉ(π₯ Β· π¦) β ran πΉ)) |
65 | 15, 28, 58, 64 | syl3anbrc 1343 |
1
β’ (π β ran πΉ β
(SubMndβ(mulGrpββfld))) |