MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efsubm Structured version   Visualization version   GIF version

Theorem efsubm 25707
Description: The image of a subgroup of the group +, under the exponential function of a scaled complex number is a submonoid of the multiplicative group of fld. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
efabl.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
efabl.2 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
efabl.3 (𝜑𝐴 ∈ ℂ)
efabl.4 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
Assertion
Ref Expression
efsubm (𝜑 → ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥

Proof of Theorem efsubm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eff 15791 . . . . . 6 exp:ℂ⟶ℂ
21a1i 11 . . . . 5 ((𝜑𝑥𝑋) → exp:ℂ⟶ℂ)
3 efabl.3 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
43adantr 481 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
5 efabl.4 . . . . . . . 8 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
6 cnfldbas 20601 . . . . . . . . 9 ℂ = (Base‘ℂfld)
76subgss 18756 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
85, 7syl 17 . . . . . . 7 (𝜑𝑋 ⊆ ℂ)
98sselda 3921 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
104, 9mulcld 10995 . . . . 5 ((𝜑𝑥𝑋) → (𝐴 · 𝑥) ∈ ℂ)
112, 10ffvelrnd 6962 . . . 4 ((𝜑𝑥𝑋) → (exp‘(𝐴 · 𝑥)) ∈ ℂ)
1211ralrimiva 3103 . . 3 (𝜑 → ∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ)
13 efabl.1 . . . 4 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
1413rnmptss 6996 . . 3 (∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ → ran 𝐹 ⊆ ℂ)
1512, 14syl 17 . 2 (𝜑 → ran 𝐹 ⊆ ℂ)
163mul01d 11174 . . . . 5 (𝜑 → (𝐴 · 0) = 0)
1716fveq2d 6778 . . . 4 (𝜑 → (exp‘(𝐴 · 0)) = (exp‘0))
18 ef0 15800 . . . 4 (exp‘0) = 1
1917, 18eqtrdi 2794 . . 3 (𝜑 → (exp‘(𝐴 · 0)) = 1)
20 cnfld0 20622 . . . . . 6 0 = (0g‘ℂfld)
2120subg0cl 18763 . . . . 5 (𝑋 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑋)
225, 21syl 17 . . . 4 (𝜑 → 0 ∈ 𝑋)
23 fvex 6787 . . . 4 (exp‘(𝐴 · 0)) ∈ V
24 oveq2 7283 . . . . . 6 (𝑥 = 0 → (𝐴 · 𝑥) = (𝐴 · 0))
2524fveq2d 6778 . . . . 5 (𝑥 = 0 → (exp‘(𝐴 · 𝑥)) = (exp‘(𝐴 · 0)))
2613, 25elrnmpt1s 5866 . . . 4 ((0 ∈ 𝑋 ∧ (exp‘(𝐴 · 0)) ∈ V) → (exp‘(𝐴 · 0)) ∈ ran 𝐹)
2722, 23, 26sylancl 586 . . 3 (𝜑 → (exp‘(𝐴 · 0)) ∈ ran 𝐹)
2819, 27eqeltrrd 2840 . 2 (𝜑 → 1 ∈ ran 𝐹)
29 efabl.2 . . . . . . . . 9 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
3013, 29, 3, 5efabl 25706 . . . . . . . 8 (𝜑𝐺 ∈ Abel)
31 ablgrp 19391 . . . . . . . 8 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3230, 31syl 17 . . . . . . 7 (𝜑𝐺 ∈ Grp)
33323ad2ant1 1132 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝐺 ∈ Grp)
34 simp2 1136 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑥 ∈ ran 𝐹)
35 eqid 2738 . . . . . . . . . . 11 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
3635, 6mgpbas 19726 . . . . . . . . . 10 ℂ = (Base‘(mulGrp‘ℂfld))
3729, 36ressbas2 16949 . . . . . . . . 9 (ran 𝐹 ⊆ ℂ → ran 𝐹 = (Base‘𝐺))
3815, 37syl 17 . . . . . . . 8 (𝜑 → ran 𝐹 = (Base‘𝐺))
39383ad2ant1 1132 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → ran 𝐹 = (Base‘𝐺))
4034, 39eleqtrd 2841 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑥 ∈ (Base‘𝐺))
41 simp3 1137 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
4241, 39eleqtrd 2841 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑦 ∈ (Base‘𝐺))
43 eqid 2738 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
44 eqid 2738 . . . . . . 7 (+g𝐺) = (+g𝐺)
4543, 44grpcl 18585 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
4633, 40, 42, 45syl3anc 1370 . . . . 5 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
475mptexd 7100 . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) ∈ V)
4813, 47eqeltrid 2843 . . . . . . . 8 (𝜑𝐹 ∈ V)
49 rnexg 7751 . . . . . . . 8 (𝐹 ∈ V → ran 𝐹 ∈ V)
50 cnfldmul 20603 . . . . . . . . . 10 · = (.r‘ℂfld)
5135, 50mgpplusg 19724 . . . . . . . . 9 · = (+g‘(mulGrp‘ℂfld))
5229, 51ressplusg 17000 . . . . . . . 8 (ran 𝐹 ∈ V → · = (+g𝐺))
5348, 49, 523syl 18 . . . . . . 7 (𝜑 → · = (+g𝐺))
54533ad2ant1 1132 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → · = (+g𝐺))
5554oveqd 7292 . . . . 5 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥 · 𝑦) = (𝑥(+g𝐺)𝑦))
5646, 55, 393eltr4d 2854 . . . 4 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥 · 𝑦) ∈ ran 𝐹)
57563expb 1119 . . 3 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹)) → (𝑥 · 𝑦) ∈ ran 𝐹)
5857ralrimivva 3123 . 2 (𝜑 → ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹)
59 cnring 20620 . . 3 fld ∈ Ring
6035ringmgp 19789 . . 3 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
61 cnfld1 20623 . . . . 5 1 = (1r‘ℂfld)
6235, 61ringidval 19739 . . . 4 1 = (0g‘(mulGrp‘ℂfld))
6336, 62, 51issubm 18442 . . 3 ((mulGrp‘ℂfld) ∈ Mnd → (ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ran 𝐹 ⊆ ℂ ∧ 1 ∈ ran 𝐹 ∧ ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹)))
6459, 60, 63mp2b 10 . 2 (ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ran 𝐹 ⊆ ℂ ∧ 1 ∈ ran 𝐹 ∧ ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹))
6515, 28, 58, 64syl3anbrc 1342 1 (𝜑 → ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  cmpt 5157  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   · cmul 10876  expce 15771  Basecbs 16912  s cress 16941  +gcplusg 16962  Mndcmnd 18385  SubMndcsubmnd 18429  Grpcgrp 18577  SubGrpcsubg 18749  Abelcabl 19387  mulGrpcmgp 19720  Ringcrg 19783  fldccnfld 20597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-subg 18752  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-cnfld 20598
This theorem is referenced by:  circsubm  25709
  Copyright terms: Public domain W3C validator