MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efsubm Structured version   Visualization version   GIF version

Theorem efsubm 26512
Description: The image of a subgroup of the group +, under the exponential function of a scaled complex number is a submonoid of the multiplicative group of fld. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
efabl.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
efabl.2 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
efabl.3 (𝜑𝐴 ∈ ℂ)
efabl.4 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
Assertion
Ref Expression
efsubm (𝜑 → ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥

Proof of Theorem efsubm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eff 16097 . . . . . 6 exp:ℂ⟶ℂ
21a1i 11 . . . . 5 ((𝜑𝑥𝑋) → exp:ℂ⟶ℂ)
3 efabl.3 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
43adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
5 efabl.4 . . . . . . . 8 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
6 cnfldbas 21319 . . . . . . . . 9 ℂ = (Base‘ℂfld)
76subgss 19110 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
85, 7syl 17 . . . . . . 7 (𝜑𝑋 ⊆ ℂ)
98sselda 3958 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
104, 9mulcld 11255 . . . . 5 ((𝜑𝑥𝑋) → (𝐴 · 𝑥) ∈ ℂ)
112, 10ffvelcdmd 7075 . . . 4 ((𝜑𝑥𝑋) → (exp‘(𝐴 · 𝑥)) ∈ ℂ)
1211ralrimiva 3132 . . 3 (𝜑 → ∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ)
13 efabl.1 . . . 4 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
1413rnmptss 7113 . . 3 (∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ → ran 𝐹 ⊆ ℂ)
1512, 14syl 17 . 2 (𝜑 → ran 𝐹 ⊆ ℂ)
163mul01d 11434 . . . . 5 (𝜑 → (𝐴 · 0) = 0)
1716fveq2d 6880 . . . 4 (𝜑 → (exp‘(𝐴 · 0)) = (exp‘0))
18 ef0 16107 . . . 4 (exp‘0) = 1
1917, 18eqtrdi 2786 . . 3 (𝜑 → (exp‘(𝐴 · 0)) = 1)
20 cnfld0 21355 . . . . . 6 0 = (0g‘ℂfld)
2120subg0cl 19117 . . . . 5 (𝑋 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑋)
225, 21syl 17 . . . 4 (𝜑 → 0 ∈ 𝑋)
23 fvex 6889 . . . 4 (exp‘(𝐴 · 0)) ∈ V
24 oveq2 7413 . . . . . 6 (𝑥 = 0 → (𝐴 · 𝑥) = (𝐴 · 0))
2524fveq2d 6880 . . . . 5 (𝑥 = 0 → (exp‘(𝐴 · 𝑥)) = (exp‘(𝐴 · 0)))
2613, 25elrnmpt1s 5939 . . . 4 ((0 ∈ 𝑋 ∧ (exp‘(𝐴 · 0)) ∈ V) → (exp‘(𝐴 · 0)) ∈ ran 𝐹)
2722, 23, 26sylancl 586 . . 3 (𝜑 → (exp‘(𝐴 · 0)) ∈ ran 𝐹)
2819, 27eqeltrrd 2835 . 2 (𝜑 → 1 ∈ ran 𝐹)
29 efabl.2 . . . . . . . . 9 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
3013, 29, 3, 5efabl 26511 . . . . . . . 8 (𝜑𝐺 ∈ Abel)
31 ablgrp 19766 . . . . . . . 8 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3230, 31syl 17 . . . . . . 7 (𝜑𝐺 ∈ Grp)
33323ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝐺 ∈ Grp)
34 simp2 1137 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑥 ∈ ran 𝐹)
35 eqid 2735 . . . . . . . . . . 11 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
3635, 6mgpbas 20105 . . . . . . . . . 10 ℂ = (Base‘(mulGrp‘ℂfld))
3729, 36ressbas2 17259 . . . . . . . . 9 (ran 𝐹 ⊆ ℂ → ran 𝐹 = (Base‘𝐺))
3815, 37syl 17 . . . . . . . 8 (𝜑 → ran 𝐹 = (Base‘𝐺))
39383ad2ant1 1133 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → ran 𝐹 = (Base‘𝐺))
4034, 39eleqtrd 2836 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑥 ∈ (Base‘𝐺))
41 simp3 1138 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
4241, 39eleqtrd 2836 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑦 ∈ (Base‘𝐺))
43 eqid 2735 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
44 eqid 2735 . . . . . . 7 (+g𝐺) = (+g𝐺)
4543, 44grpcl 18924 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
4633, 40, 42, 45syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
475mptexd 7216 . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) ∈ V)
4813, 47eqeltrid 2838 . . . . . . . 8 (𝜑𝐹 ∈ V)
49 rnexg 7898 . . . . . . . 8 (𝐹 ∈ V → ran 𝐹 ∈ V)
50 cnfldmul 21323 . . . . . . . . . 10 · = (.r‘ℂfld)
5135, 50mgpplusg 20104 . . . . . . . . 9 · = (+g‘(mulGrp‘ℂfld))
5229, 51ressplusg 17305 . . . . . . . 8 (ran 𝐹 ∈ V → · = (+g𝐺))
5348, 49, 523syl 18 . . . . . . 7 (𝜑 → · = (+g𝐺))
54533ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → · = (+g𝐺))
5554oveqd 7422 . . . . 5 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥 · 𝑦) = (𝑥(+g𝐺)𝑦))
5646, 55, 393eltr4d 2849 . . . 4 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥 · 𝑦) ∈ ran 𝐹)
57563expb 1120 . . 3 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹)) → (𝑥 · 𝑦) ∈ ran 𝐹)
5857ralrimivva 3187 . 2 (𝜑 → ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹)
59 cnring 21353 . . 3 fld ∈ Ring
6035ringmgp 20199 . . 3 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
61 cnfld1 21356 . . . . 5 1 = (1r‘ℂfld)
6235, 61ringidval 20143 . . . 4 1 = (0g‘(mulGrp‘ℂfld))
6336, 62, 51issubm 18781 . . 3 ((mulGrp‘ℂfld) ∈ Mnd → (ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ran 𝐹 ⊆ ℂ ∧ 1 ∈ ran 𝐹 ∧ ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹)))
6459, 60, 63mp2b 10 . 2 (ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ran 𝐹 ⊆ ℂ ∧ 1 ∈ ran 𝐹 ∧ ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹))
6515, 28, 58, 64syl3anbrc 1344 1 (𝜑 → ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926  cmpt 5201  ran crn 5655  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   · cmul 11134  expce 16077  Basecbs 17228  s cress 17251  +gcplusg 17271  Mndcmnd 18712  SubMndcsubmnd 18760  Grpcgrp 18916  SubGrpcsubg 19103  Abelcabl 19762  mulGrpcmgp 20100  Ringcrg 20193  fldccnfld 21315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-ico 13368  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-subg 19106  df-cmn 19763  df-abl 19764  df-mgp 20101  df-ur 20142  df-ring 20195  df-cring 20196  df-cnfld 21316
This theorem is referenced by:  circsubm  26514
  Copyright terms: Public domain W3C validator