Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubco Structured version   Visualization version   GIF version

Theorem msubco 35491
Description: The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
msubco.s 𝑆 = (mSubst‘𝑇)
Assertion
Ref Expression
msubco ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺) ∈ ran 𝑆)

Proof of Theorem msubco
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (mEx‘𝑇) = (mEx‘𝑇)
2 eqid 2729 . . . . 5 (mRSubst‘𝑇) = (mRSubst‘𝑇)
3 msubco.s . . . . 5 𝑆 = (mSubst‘𝑇)
41, 2, 3elmsubrn 35488 . . . 4 ran 𝑆 = ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
54eleq2i 2820 . . 3 (𝐹 ∈ ran 𝑆𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩)))
6 eqid 2729 . . . 4 (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩)) = (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
7 fvex 6853 . . . . 5 (mEx‘𝑇) ∈ V
87mptex 7179 . . . 4 (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∈ V
96, 8elrnmpti 5915 . . 3 (𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩)) ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
105, 9bitri 275 . 2 (𝐹 ∈ ran 𝑆 ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
111, 2, 3elmsubrn 35488 . . . 4 ran 𝑆 = ran (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
1211eleq2i 2820 . . 3 (𝐺 ∈ ran 𝑆𝐺 ∈ ran (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
13 eqid 2729 . . . 4 (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) = (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
147mptex 7179 . . . 4 (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩) ∈ V
1513, 14elrnmpti 5915 . . 3 (𝐺 ∈ ran (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ↔ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
1612, 15bitri 275 . 2 (𝐺 ∈ ran 𝑆 ↔ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
17 reeanv 3207 . . 3 (∃𝑓 ∈ ran (mRSubst‘𝑇)∃𝑔 ∈ ran (mRSubst‘𝑇)(𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ↔ (∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
18 simpr 484 . . . . . . . . . . . 12 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → 𝑦 ∈ (mEx‘𝑇))
19 eqid 2729 . . . . . . . . . . . . 13 (mTC‘𝑇) = (mTC‘𝑇)
20 eqid 2729 . . . . . . . . . . . . 13 (mREx‘𝑇) = (mREx‘𝑇)
2119, 1, 20mexval 35462 . . . . . . . . . . . 12 (mEx‘𝑇) = ((mTC‘𝑇) × (mREx‘𝑇))
2218, 21eleqtrdi 2838 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → 𝑦 ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
23 xp1st 7979 . . . . . . . . . . 11 (𝑦 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (1st𝑦) ∈ (mTC‘𝑇))
2422, 23syl 17 . . . . . . . . . 10 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → (1st𝑦) ∈ (mTC‘𝑇))
252, 20mrsubf 35477 . . . . . . . . . . . 12 (𝑔 ∈ ran (mRSubst‘𝑇) → 𝑔:(mREx‘𝑇)⟶(mREx‘𝑇))
2625ad2antlr 727 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → 𝑔:(mREx‘𝑇)⟶(mREx‘𝑇))
27 xp2nd 7980 . . . . . . . . . . . 12 (𝑦 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (2nd𝑦) ∈ (mREx‘𝑇))
2822, 27syl 17 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → (2nd𝑦) ∈ (mREx‘𝑇))
2926, 28ffvelcdmd 7039 . . . . . . . . . 10 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → (𝑔‘(2nd𝑦)) ∈ (mREx‘𝑇))
30 opelxpi 5668 . . . . . . . . . 10 (((1st𝑦) ∈ (mTC‘𝑇) ∧ (𝑔‘(2nd𝑦)) ∈ (mREx‘𝑇)) → ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
3124, 29, 30syl2anc 584 . . . . . . . . 9 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
3231, 21eleqtrrdi 2839 . . . . . . . 8 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ ∈ (mEx‘𝑇))
33 eqidd 2730 . . . . . . . 8 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
34 eqidd 2730 . . . . . . . 8 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
35 fvex 6853 . . . . . . . . . 10 (1st𝑦) ∈ V
36 fvex 6853 . . . . . . . . . 10 (𝑔‘(2nd𝑦)) ∈ V
3735, 36op1std 7957 . . . . . . . . 9 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → (1st𝑥) = (1st𝑦))
3835, 36op2ndd 7958 . . . . . . . . . 10 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → (2nd𝑥) = (𝑔‘(2nd𝑦)))
3938fveq2d 6844 . . . . . . . . 9 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → (𝑓‘(2nd𝑥)) = (𝑓‘(𝑔‘(2nd𝑦))))
4037, 39opeq12d 4841 . . . . . . . 8 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩ = ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩)
4132, 33, 34, 40fmptco 7083 . . . . . . 7 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩))
42 fvco3 6942 . . . . . . . . . 10 ((𝑔:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ (2nd𝑦) ∈ (mREx‘𝑇)) → ((𝑓𝑔)‘(2nd𝑦)) = (𝑓‘(𝑔‘(2nd𝑦))))
4326, 28, 42syl2anc 584 . . . . . . . . 9 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ((𝑓𝑔)‘(2nd𝑦)) = (𝑓‘(𝑔‘(2nd𝑦))))
4443opeq2d 4840 . . . . . . . 8 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩ = ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩)
4544mpteq2dva 5195 . . . . . . 7 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩))
4641, 45eqtr4d 2767 . . . . . 6 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩))
472mrsubco 35481 . . . . . . . 8 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑓𝑔) ∈ ran (mRSubst‘𝑇))
487mptex 7179 . . . . . . . 8 (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ V
49 eqid 2729 . . . . . . . . 9 ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩)) = ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩))
50 fveq1 6839 . . . . . . . . . . 11 ( = (𝑓𝑔) → (‘(2nd𝑦)) = ((𝑓𝑔)‘(2nd𝑦)))
5150opeq2d 4840 . . . . . . . . . 10 ( = (𝑓𝑔) → ⟨(1st𝑦), (‘(2nd𝑦))⟩ = ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩)
5251mpteq2dv 5196 . . . . . . . . 9 ( = (𝑓𝑔) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩))
5349, 52elrnmpt1s 5912 . . . . . . . 8 (((𝑓𝑔) ∈ ran (mRSubst‘𝑇) ∧ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ V) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ ran ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩)))
5447, 48, 53sylancl 586 . . . . . . 7 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ ran ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩)))
551, 2, 3elmsubrn 35488 . . . . . . 7 ran 𝑆 = ran ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩))
5654, 55eleqtrrdi 2839 . . . . . 6 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ ran 𝑆)
5746, 56eqeltrd 2828 . . . . 5 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ∈ ran 𝑆)
58 coeq1 5811 . . . . . . 7 (𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) → (𝐹𝐺) = ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ 𝐺))
59 coeq2 5812 . . . . . . 7 (𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ 𝐺) = ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
6058, 59sylan9eq 2784 . . . . . 6 ((𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) = ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
6160eleq1d 2813 . . . . 5 ((𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → ((𝐹𝐺) ∈ ran 𝑆 ↔ ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ∈ ran 𝑆))
6257, 61syl5ibrcom 247 . . . 4 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) ∈ ran 𝑆))
6362rexlimivv 3177 . . 3 (∃𝑓 ∈ ran (mRSubst‘𝑇)∃𝑔 ∈ ran (mRSubst‘𝑇)(𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) ∈ ran 𝑆)
6417, 63sylbir 235 . 2 ((∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) ∈ ran 𝑆)
6510, 16, 64syl2anb 598 1 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺) ∈ ran 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444  cop 4591  cmpt 5183   × cxp 5629  ran crn 5632  ccom 5635  wf 6495  cfv 6499  1st c1st 7945  2nd c2nd 7946  mTCcmtc 35424  mRExcmrex 35426  mExcmex 35427  mRSubstcmrsub 35430  mSubstcmsub 35431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-gsum 17381  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-frmd 18752  df-vrmd 18753  df-mrex 35446  df-mex 35447  df-mrsub 35450  df-msub 35451
This theorem is referenced by:  mclsppslem  35543
  Copyright terms: Public domain W3C validator