Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubco Structured version   Visualization version   GIF version

Theorem msubco 33393
Description: The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
msubco.s 𝑆 = (mSubst‘𝑇)
Assertion
Ref Expression
msubco ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺) ∈ ran 𝑆)

Proof of Theorem msubco
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (mEx‘𝑇) = (mEx‘𝑇)
2 eqid 2738 . . . . 5 (mRSubst‘𝑇) = (mRSubst‘𝑇)
3 msubco.s . . . . 5 𝑆 = (mSubst‘𝑇)
41, 2, 3elmsubrn 33390 . . . 4 ran 𝑆 = ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
54eleq2i 2830 . . 3 (𝐹 ∈ ran 𝑆𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩)))
6 eqid 2738 . . . 4 (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩)) = (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
7 fvex 6769 . . . . 5 (mEx‘𝑇) ∈ V
87mptex 7081 . . . 4 (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∈ V
96, 8elrnmpti 5858 . . 3 (𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩)) ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
105, 9bitri 274 . 2 (𝐹 ∈ ran 𝑆 ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
111, 2, 3elmsubrn 33390 . . . 4 ran 𝑆 = ran (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
1211eleq2i 2830 . . 3 (𝐺 ∈ ran 𝑆𝐺 ∈ ran (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
13 eqid 2738 . . . 4 (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) = (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
147mptex 7081 . . . 4 (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩) ∈ V
1513, 14elrnmpti 5858 . . 3 (𝐺 ∈ ran (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ↔ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
1612, 15bitri 274 . 2 (𝐺 ∈ ran 𝑆 ↔ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
17 reeanv 3292 . . 3 (∃𝑓 ∈ ran (mRSubst‘𝑇)∃𝑔 ∈ ran (mRSubst‘𝑇)(𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ↔ (∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
18 simpr 484 . . . . . . . . . . . 12 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → 𝑦 ∈ (mEx‘𝑇))
19 eqid 2738 . . . . . . . . . . . . 13 (mTC‘𝑇) = (mTC‘𝑇)
20 eqid 2738 . . . . . . . . . . . . 13 (mREx‘𝑇) = (mREx‘𝑇)
2119, 1, 20mexval 33364 . . . . . . . . . . . 12 (mEx‘𝑇) = ((mTC‘𝑇) × (mREx‘𝑇))
2218, 21eleqtrdi 2849 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → 𝑦 ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
23 xp1st 7836 . . . . . . . . . . 11 (𝑦 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (1st𝑦) ∈ (mTC‘𝑇))
2422, 23syl 17 . . . . . . . . . 10 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → (1st𝑦) ∈ (mTC‘𝑇))
252, 20mrsubf 33379 . . . . . . . . . . . 12 (𝑔 ∈ ran (mRSubst‘𝑇) → 𝑔:(mREx‘𝑇)⟶(mREx‘𝑇))
2625ad2antlr 723 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → 𝑔:(mREx‘𝑇)⟶(mREx‘𝑇))
27 xp2nd 7837 . . . . . . . . . . . 12 (𝑦 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (2nd𝑦) ∈ (mREx‘𝑇))
2822, 27syl 17 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → (2nd𝑦) ∈ (mREx‘𝑇))
2926, 28ffvelrnd 6944 . . . . . . . . . 10 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → (𝑔‘(2nd𝑦)) ∈ (mREx‘𝑇))
30 opelxpi 5617 . . . . . . . . . 10 (((1st𝑦) ∈ (mTC‘𝑇) ∧ (𝑔‘(2nd𝑦)) ∈ (mREx‘𝑇)) → ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
3124, 29, 30syl2anc 583 . . . . . . . . 9 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
3231, 21eleqtrrdi 2850 . . . . . . . 8 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ ∈ (mEx‘𝑇))
33 eqidd 2739 . . . . . . . 8 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
34 eqidd 2739 . . . . . . . 8 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
35 fvex 6769 . . . . . . . . . 10 (1st𝑦) ∈ V
36 fvex 6769 . . . . . . . . . 10 (𝑔‘(2nd𝑦)) ∈ V
3735, 36op1std 7814 . . . . . . . . 9 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → (1st𝑥) = (1st𝑦))
3835, 36op2ndd 7815 . . . . . . . . . 10 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → (2nd𝑥) = (𝑔‘(2nd𝑦)))
3938fveq2d 6760 . . . . . . . . 9 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → (𝑓‘(2nd𝑥)) = (𝑓‘(𝑔‘(2nd𝑦))))
4037, 39opeq12d 4809 . . . . . . . 8 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩ = ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩)
4132, 33, 34, 40fmptco 6983 . . . . . . 7 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩))
42 fvco3 6849 . . . . . . . . . 10 ((𝑔:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ (2nd𝑦) ∈ (mREx‘𝑇)) → ((𝑓𝑔)‘(2nd𝑦)) = (𝑓‘(𝑔‘(2nd𝑦))))
4326, 28, 42syl2anc 583 . . . . . . . . 9 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ((𝑓𝑔)‘(2nd𝑦)) = (𝑓‘(𝑔‘(2nd𝑦))))
4443opeq2d 4808 . . . . . . . 8 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩ = ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩)
4544mpteq2dva 5170 . . . . . . 7 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩))
4641, 45eqtr4d 2781 . . . . . 6 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩))
472mrsubco 33383 . . . . . . . 8 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑓𝑔) ∈ ran (mRSubst‘𝑇))
487mptex 7081 . . . . . . . 8 (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ V
49 eqid 2738 . . . . . . . . 9 ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩)) = ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩))
50 fveq1 6755 . . . . . . . . . . 11 ( = (𝑓𝑔) → (‘(2nd𝑦)) = ((𝑓𝑔)‘(2nd𝑦)))
5150opeq2d 4808 . . . . . . . . . 10 ( = (𝑓𝑔) → ⟨(1st𝑦), (‘(2nd𝑦))⟩ = ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩)
5251mpteq2dv 5172 . . . . . . . . 9 ( = (𝑓𝑔) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩))
5349, 52elrnmpt1s 5855 . . . . . . . 8 (((𝑓𝑔) ∈ ran (mRSubst‘𝑇) ∧ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ V) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ ran ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩)))
5447, 48, 53sylancl 585 . . . . . . 7 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ ran ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩)))
551, 2, 3elmsubrn 33390 . . . . . . 7 ran 𝑆 = ran ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩))
5654, 55eleqtrrdi 2850 . . . . . 6 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ ran 𝑆)
5746, 56eqeltrd 2839 . . . . 5 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ∈ ran 𝑆)
58 coeq1 5755 . . . . . . 7 (𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) → (𝐹𝐺) = ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ 𝐺))
59 coeq2 5756 . . . . . . 7 (𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ 𝐺) = ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
6058, 59sylan9eq 2799 . . . . . 6 ((𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) = ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
6160eleq1d 2823 . . . . 5 ((𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → ((𝐹𝐺) ∈ ran 𝑆 ↔ ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ∈ ran 𝑆))
6257, 61syl5ibrcom 246 . . . 4 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) ∈ ran 𝑆))
6362rexlimivv 3220 . . 3 (∃𝑓 ∈ ran (mRSubst‘𝑇)∃𝑔 ∈ ran (mRSubst‘𝑇)(𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) ∈ ran 𝑆)
6417, 63sylbir 234 . 2 ((∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) ∈ ran 𝑆)
6510, 16, 64syl2anb 597 1 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺) ∈ ran 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  cop 4564  cmpt 5153   × cxp 5578  ran crn 5581  ccom 5584  wf 6414  cfv 6418  1st c1st 7802  2nd c2nd 7803  mTCcmtc 33326  mRExcmrex 33328  mExcmex 33329  mRSubstcmrsub 33332  mSubstcmsub 33333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-frmd 18403  df-vrmd 18404  df-mrex 33348  df-mex 33349  df-mrsub 33352  df-msub 33353
This theorem is referenced by:  mclsppslem  33445
  Copyright terms: Public domain W3C validator