Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubco Structured version   Visualization version   GIF version

Theorem msubco 31879
Description: The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
msubco.s 𝑆 = (mSubst‘𝑇)
Assertion
Ref Expression
msubco ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺) ∈ ran 𝑆)

Proof of Theorem msubco
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2765 . . . . 5 (mEx‘𝑇) = (mEx‘𝑇)
2 eqid 2765 . . . . 5 (mRSubst‘𝑇) = (mRSubst‘𝑇)
3 msubco.s . . . . 5 𝑆 = (mSubst‘𝑇)
41, 2, 3elmsubrn 31876 . . . 4 ran 𝑆 = ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
54eleq2i 2836 . . 3 (𝐹 ∈ ran 𝑆𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩)))
6 eqid 2765 . . . 4 (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩)) = (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
7 fvex 6390 . . . . 5 (mEx‘𝑇) ∈ V
87mptex 6681 . . . 4 (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∈ V
96, 8elrnmpti 5547 . . 3 (𝐹 ∈ ran (𝑓 ∈ ran (mRSubst‘𝑇) ↦ (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩)) ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
105, 9bitri 266 . 2 (𝐹 ∈ ran 𝑆 ↔ ∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
111, 2, 3elmsubrn 31876 . . . 4 ran 𝑆 = ran (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
1211eleq2i 2836 . . 3 (𝐺 ∈ ran 𝑆𝐺 ∈ ran (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
13 eqid 2765 . . . 4 (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) = (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
147mptex 6681 . . . 4 (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩) ∈ V
1513, 14elrnmpti 5547 . . 3 (𝐺 ∈ ran (𝑔 ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ↔ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
1612, 15bitri 266 . 2 (𝐺 ∈ ran 𝑆 ↔ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
17 reeanv 3254 . . 3 (∃𝑓 ∈ ran (mRSubst‘𝑇)∃𝑔 ∈ ran (mRSubst‘𝑇)(𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ↔ (∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
18 simpr 477 . . . . . . . . . . . 12 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → 𝑦 ∈ (mEx‘𝑇))
19 eqid 2765 . . . . . . . . . . . . 13 (mTC‘𝑇) = (mTC‘𝑇)
20 eqid 2765 . . . . . . . . . . . . 13 (mREx‘𝑇) = (mREx‘𝑇)
2119, 1, 20mexval 31850 . . . . . . . . . . . 12 (mEx‘𝑇) = ((mTC‘𝑇) × (mREx‘𝑇))
2218, 21syl6eleq 2854 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → 𝑦 ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
23 xp1st 7400 . . . . . . . . . . 11 (𝑦 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (1st𝑦) ∈ (mTC‘𝑇))
2422, 23syl 17 . . . . . . . . . 10 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → (1st𝑦) ∈ (mTC‘𝑇))
252, 20mrsubf 31865 . . . . . . . . . . . 12 (𝑔 ∈ ran (mRSubst‘𝑇) → 𝑔:(mREx‘𝑇)⟶(mREx‘𝑇))
2625ad2antlr 718 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → 𝑔:(mREx‘𝑇)⟶(mREx‘𝑇))
27 xp2nd 7401 . . . . . . . . . . . 12 (𝑦 ∈ ((mTC‘𝑇) × (mREx‘𝑇)) → (2nd𝑦) ∈ (mREx‘𝑇))
2822, 27syl 17 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → (2nd𝑦) ∈ (mREx‘𝑇))
2926, 28ffvelrnd 6552 . . . . . . . . . 10 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → (𝑔‘(2nd𝑦)) ∈ (mREx‘𝑇))
30 opelxpi 5316 . . . . . . . . . 10 (((1st𝑦) ∈ (mTC‘𝑇) ∧ (𝑔‘(2nd𝑦)) ∈ (mREx‘𝑇)) → ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
3124, 29, 30syl2anc 579 . . . . . . . . 9 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ ∈ ((mTC‘𝑇) × (mREx‘𝑇)))
3231, 21syl6eleqr 2855 . . . . . . . 8 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ ∈ (mEx‘𝑇))
33 eqidd 2766 . . . . . . . 8 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩))
34 eqidd 2766 . . . . . . . 8 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩))
35 fvex 6390 . . . . . . . . . 10 (1st𝑦) ∈ V
36 fvex 6390 . . . . . . . . . 10 (𝑔‘(2nd𝑦)) ∈ V
3735, 36op1std 7378 . . . . . . . . 9 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → (1st𝑥) = (1st𝑦))
3835, 36op2ndd 7379 . . . . . . . . . 10 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → (2nd𝑥) = (𝑔‘(2nd𝑦)))
3938fveq2d 6381 . . . . . . . . 9 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → (𝑓‘(2nd𝑥)) = (𝑓‘(𝑔‘(2nd𝑦))))
4037, 39opeq12d 4569 . . . . . . . 8 (𝑥 = ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩ → ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩ = ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩)
4132, 33, 34, 40fmptco 6589 . . . . . . 7 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩))
42 fvco3 6466 . . . . . . . . . 10 ((𝑔:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ (2nd𝑦) ∈ (mREx‘𝑇)) → ((𝑓𝑔)‘(2nd𝑦)) = (𝑓‘(𝑔‘(2nd𝑦))))
4326, 28, 42syl2anc 579 . . . . . . . . 9 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ((𝑓𝑔)‘(2nd𝑦)) = (𝑓‘(𝑔‘(2nd𝑦))))
4443opeq2d 4568 . . . . . . . 8 (((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) ∧ 𝑦 ∈ (mEx‘𝑇)) → ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩ = ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩)
4544mpteq2dva 4905 . . . . . . 7 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑓‘(𝑔‘(2nd𝑦)))⟩))
4641, 45eqtr4d 2802 . . . . . 6 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩))
472mrsubco 31869 . . . . . . . 8 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑓𝑔) ∈ ran (mRSubst‘𝑇))
487mptex 6681 . . . . . . . 8 (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ V
49 eqid 2765 . . . . . . . . 9 ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩)) = ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩))
50 fveq1 6376 . . . . . . . . . . 11 ( = (𝑓𝑔) → (‘(2nd𝑦)) = ((𝑓𝑔)‘(2nd𝑦)))
5150opeq2d 4568 . . . . . . . . . 10 ( = (𝑓𝑔) → ⟨(1st𝑦), (‘(2nd𝑦))⟩ = ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩)
5251mpteq2dv 4906 . . . . . . . . 9 ( = (𝑓𝑔) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩) = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩))
5349, 52elrnmpt1s 5544 . . . . . . . 8 (((𝑓𝑔) ∈ ran (mRSubst‘𝑇) ∧ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ V) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ ran ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩)))
5447, 48, 53sylancl 580 . . . . . . 7 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ ran ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩)))
551, 2, 3elmsubrn 31876 . . . . . . 7 ran 𝑆 = ran ( ∈ ran (mRSubst‘𝑇) ↦ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (‘(2nd𝑦))⟩))
5654, 55syl6eleqr 2855 . . . . . 6 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), ((𝑓𝑔)‘(2nd𝑦))⟩) ∈ ran 𝑆)
5746, 56eqeltrd 2844 . . . . 5 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ∈ ran 𝑆)
58 coeq1 5450 . . . . . . 7 (𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) → (𝐹𝐺) = ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ 𝐺))
59 coeq2 5451 . . . . . . 7 (𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩) → ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ 𝐺) = ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
6058, 59sylan9eq 2819 . . . . . 6 ((𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) = ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)))
6160eleq1d 2829 . . . . 5 ((𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → ((𝐹𝐺) ∈ ran 𝑆 ↔ ((𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∘ (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) ∈ ran 𝑆))
6257, 61syl5ibrcom 238 . . . 4 ((𝑓 ∈ ran (mRSubst‘𝑇) ∧ 𝑔 ∈ ran (mRSubst‘𝑇)) → ((𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) ∈ ran 𝑆))
6362rexlimivv 3183 . . 3 (∃𝑓 ∈ ran (mRSubst‘𝑇)∃𝑔 ∈ ran (mRSubst‘𝑇)(𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ 𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) ∈ ran 𝑆)
6417, 63sylbir 226 . 2 ((∃𝑓 ∈ ran (mRSubst‘𝑇)𝐹 = (𝑥 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑥), (𝑓‘(2nd𝑥))⟩) ∧ ∃𝑔 ∈ ran (mRSubst‘𝑇)𝐺 = (𝑦 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑦), (𝑔‘(2nd𝑦))⟩)) → (𝐹𝐺) ∈ ran 𝑆)
6510, 16, 64syl2anb 591 1 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺) ∈ ran 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wrex 3056  Vcvv 3350  cop 4342  cmpt 4890   × cxp 5277  ran crn 5280  ccom 5283  wf 6066  cfv 6070  1st c1st 7366  2nd c2nd 7367  mTCcmtc 31812  mRExcmrex 31814  mExcmex 31815  mRSubstcmrsub 31818  mSubstcmsub 31819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-oadd 7770  df-er 7949  df-map 8064  df-pm 8065  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-card 9018  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-nn 11277  df-2 11337  df-n0 11541  df-xnn0 11613  df-z 11627  df-uz 11890  df-fz 12537  df-fzo 12677  df-seq 13012  df-hash 13325  df-word 13490  df-lsw 13537  df-concat 13545  df-s1 13570  df-substr 13620  df-pfx 13665  df-struct 16135  df-ndx 16136  df-slot 16137  df-base 16139  df-sets 16140  df-ress 16141  df-plusg 16230  df-0g 16371  df-gsum 16372  df-mgm 17511  df-sgrp 17553  df-mnd 17564  df-mhm 17604  df-submnd 17605  df-frmd 17656  df-vrmd 17657  df-mrex 31834  df-mex 31835  df-mrsub 31838  df-msub 31839
This theorem is referenced by:  mclsppslem  31931
  Copyright terms: Public domain W3C validator