Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubco Structured version   Visualization version   GIF version

Theorem msubco 34189
Description: The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
msubco.s 𝑆 = (mSubstβ€˜π‘‡)
Assertion
Ref Expression
msubco ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) β†’ (𝐹 ∘ 𝐺) ∈ ran 𝑆)

Proof of Theorem msubco
Dummy variables 𝑓 𝑔 β„Ž π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (mExβ€˜π‘‡) = (mExβ€˜π‘‡)
2 eqid 2733 . . . . 5 (mRSubstβ€˜π‘‡) = (mRSubstβ€˜π‘‡)
3 msubco.s . . . . 5 𝑆 = (mSubstβ€˜π‘‡)
41, 2, 3elmsubrn 34186 . . . 4 ran 𝑆 = ran (𝑓 ∈ ran (mRSubstβ€˜π‘‡) ↦ (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩))
54eleq2i 2826 . . 3 (𝐹 ∈ ran 𝑆 ↔ 𝐹 ∈ ran (𝑓 ∈ ran (mRSubstβ€˜π‘‡) ↦ (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩)))
6 eqid 2733 . . . 4 (𝑓 ∈ ran (mRSubstβ€˜π‘‡) ↦ (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩)) = (𝑓 ∈ ran (mRSubstβ€˜π‘‡) ↦ (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩))
7 fvex 6859 . . . . 5 (mExβ€˜π‘‡) ∈ V
87mptex 7177 . . . 4 (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∈ V
96, 8elrnmpti 5919 . . 3 (𝐹 ∈ ran (𝑓 ∈ ran (mRSubstβ€˜π‘‡) ↦ (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩)) ↔ βˆƒπ‘“ ∈ ran (mRSubstβ€˜π‘‡)𝐹 = (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩))
105, 9bitri 275 . 2 (𝐹 ∈ ran 𝑆 ↔ βˆƒπ‘“ ∈ ran (mRSubstβ€˜π‘‡)𝐹 = (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩))
111, 2, 3elmsubrn 34186 . . . 4 ran 𝑆 = ran (𝑔 ∈ ran (mRSubstβ€˜π‘‡) ↦ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩))
1211eleq2i 2826 . . 3 (𝐺 ∈ ran 𝑆 ↔ 𝐺 ∈ ran (𝑔 ∈ ran (mRSubstβ€˜π‘‡) ↦ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)))
13 eqid 2733 . . . 4 (𝑔 ∈ ran (mRSubstβ€˜π‘‡) ↦ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)) = (𝑔 ∈ ran (mRSubstβ€˜π‘‡) ↦ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩))
147mptex 7177 . . . 4 (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩) ∈ V
1513, 14elrnmpti 5919 . . 3 (𝐺 ∈ ran (𝑔 ∈ ran (mRSubstβ€˜π‘‡) ↦ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)) ↔ βˆƒπ‘” ∈ ran (mRSubstβ€˜π‘‡)𝐺 = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩))
1612, 15bitri 275 . 2 (𝐺 ∈ ran 𝑆 ↔ βˆƒπ‘” ∈ ran (mRSubstβ€˜π‘‡)𝐺 = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩))
17 reeanv 3216 . . 3 (βˆƒπ‘“ ∈ ran (mRSubstβ€˜π‘‡)βˆƒπ‘” ∈ ran (mRSubstβ€˜π‘‡)(𝐹 = (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∧ 𝐺 = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)) ↔ (βˆƒπ‘“ ∈ ran (mRSubstβ€˜π‘‡)𝐹 = (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∧ βˆƒπ‘” ∈ ran (mRSubstβ€˜π‘‡)𝐺 = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)))
18 simpr 486 . . . . . . . . . . . 12 (((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) ∧ 𝑦 ∈ (mExβ€˜π‘‡)) β†’ 𝑦 ∈ (mExβ€˜π‘‡))
19 eqid 2733 . . . . . . . . . . . . 13 (mTCβ€˜π‘‡) = (mTCβ€˜π‘‡)
20 eqid 2733 . . . . . . . . . . . . 13 (mRExβ€˜π‘‡) = (mRExβ€˜π‘‡)
2119, 1, 20mexval 34160 . . . . . . . . . . . 12 (mExβ€˜π‘‡) = ((mTCβ€˜π‘‡) Γ— (mRExβ€˜π‘‡))
2218, 21eleqtrdi 2844 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) ∧ 𝑦 ∈ (mExβ€˜π‘‡)) β†’ 𝑦 ∈ ((mTCβ€˜π‘‡) Γ— (mRExβ€˜π‘‡)))
23 xp1st 7957 . . . . . . . . . . 11 (𝑦 ∈ ((mTCβ€˜π‘‡) Γ— (mRExβ€˜π‘‡)) β†’ (1st β€˜π‘¦) ∈ (mTCβ€˜π‘‡))
2422, 23syl 17 . . . . . . . . . 10 (((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) ∧ 𝑦 ∈ (mExβ€˜π‘‡)) β†’ (1st β€˜π‘¦) ∈ (mTCβ€˜π‘‡))
252, 20mrsubf 34175 . . . . . . . . . . . 12 (𝑔 ∈ ran (mRSubstβ€˜π‘‡) β†’ 𝑔:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡))
2625ad2antlr 726 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) ∧ 𝑦 ∈ (mExβ€˜π‘‡)) β†’ 𝑔:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡))
27 xp2nd 7958 . . . . . . . . . . . 12 (𝑦 ∈ ((mTCβ€˜π‘‡) Γ— (mRExβ€˜π‘‡)) β†’ (2nd β€˜π‘¦) ∈ (mRExβ€˜π‘‡))
2822, 27syl 17 . . . . . . . . . . 11 (((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) ∧ 𝑦 ∈ (mExβ€˜π‘‡)) β†’ (2nd β€˜π‘¦) ∈ (mRExβ€˜π‘‡))
2926, 28ffvelcdmd 7040 . . . . . . . . . 10 (((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) ∧ 𝑦 ∈ (mExβ€˜π‘‡)) β†’ (π‘”β€˜(2nd β€˜π‘¦)) ∈ (mRExβ€˜π‘‡))
30 opelxpi 5674 . . . . . . . . . 10 (((1st β€˜π‘¦) ∈ (mTCβ€˜π‘‡) ∧ (π‘”β€˜(2nd β€˜π‘¦)) ∈ (mRExβ€˜π‘‡)) β†’ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩ ∈ ((mTCβ€˜π‘‡) Γ— (mRExβ€˜π‘‡)))
3124, 29, 30syl2anc 585 . . . . . . . . 9 (((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) ∧ 𝑦 ∈ (mExβ€˜π‘‡)) β†’ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩ ∈ ((mTCβ€˜π‘‡) Γ— (mRExβ€˜π‘‡)))
3231, 21eleqtrrdi 2845 . . . . . . . 8 (((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) ∧ 𝑦 ∈ (mExβ€˜π‘‡)) β†’ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩ ∈ (mExβ€˜π‘‡))
33 eqidd 2734 . . . . . . . 8 ((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) β†’ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩) = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩))
34 eqidd 2734 . . . . . . . 8 ((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) β†’ (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) = (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩))
35 fvex 6859 . . . . . . . . . 10 (1st β€˜π‘¦) ∈ V
36 fvex 6859 . . . . . . . . . 10 (π‘”β€˜(2nd β€˜π‘¦)) ∈ V
3735, 36op1std 7935 . . . . . . . . 9 (π‘₯ = ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩ β†’ (1st β€˜π‘₯) = (1st β€˜π‘¦))
3835, 36op2ndd 7936 . . . . . . . . . 10 (π‘₯ = ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩ β†’ (2nd β€˜π‘₯) = (π‘”β€˜(2nd β€˜π‘¦)))
3938fveq2d 6850 . . . . . . . . 9 (π‘₯ = ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩ β†’ (π‘“β€˜(2nd β€˜π‘₯)) = (π‘“β€˜(π‘”β€˜(2nd β€˜π‘¦))))
4037, 39opeq12d 4842 . . . . . . . 8 (π‘₯ = ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩ β†’ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩ = ⟨(1st β€˜π‘¦), (π‘“β€˜(π‘”β€˜(2nd β€˜π‘¦)))⟩)
4132, 33, 34, 40fmptco 7079 . . . . . . 7 ((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) β†’ ((π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∘ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)) = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘“β€˜(π‘”β€˜(2nd β€˜π‘¦)))⟩))
42 fvco3 6944 . . . . . . . . . 10 ((𝑔:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡) ∧ (2nd β€˜π‘¦) ∈ (mRExβ€˜π‘‡)) β†’ ((𝑓 ∘ 𝑔)β€˜(2nd β€˜π‘¦)) = (π‘“β€˜(π‘”β€˜(2nd β€˜π‘¦))))
4326, 28, 42syl2anc 585 . . . . . . . . 9 (((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) ∧ 𝑦 ∈ (mExβ€˜π‘‡)) β†’ ((𝑓 ∘ 𝑔)β€˜(2nd β€˜π‘¦)) = (π‘“β€˜(π‘”β€˜(2nd β€˜π‘¦))))
4443opeq2d 4841 . . . . . . . 8 (((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) ∧ 𝑦 ∈ (mExβ€˜π‘‡)) β†’ ⟨(1st β€˜π‘¦), ((𝑓 ∘ 𝑔)β€˜(2nd β€˜π‘¦))⟩ = ⟨(1st β€˜π‘¦), (π‘“β€˜(π‘”β€˜(2nd β€˜π‘¦)))⟩)
4544mpteq2dva 5209 . . . . . . 7 ((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) β†’ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), ((𝑓 ∘ 𝑔)β€˜(2nd β€˜π‘¦))⟩) = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘“β€˜(π‘”β€˜(2nd β€˜π‘¦)))⟩))
4641, 45eqtr4d 2776 . . . . . 6 ((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) β†’ ((π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∘ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)) = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), ((𝑓 ∘ 𝑔)β€˜(2nd β€˜π‘¦))⟩))
472mrsubco 34179 . . . . . . . 8 ((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) β†’ (𝑓 ∘ 𝑔) ∈ ran (mRSubstβ€˜π‘‡))
487mptex 7177 . . . . . . . 8 (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), ((𝑓 ∘ 𝑔)β€˜(2nd β€˜π‘¦))⟩) ∈ V
49 eqid 2733 . . . . . . . . 9 (β„Ž ∈ ran (mRSubstβ€˜π‘‡) ↦ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (β„Žβ€˜(2nd β€˜π‘¦))⟩)) = (β„Ž ∈ ran (mRSubstβ€˜π‘‡) ↦ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (β„Žβ€˜(2nd β€˜π‘¦))⟩))
50 fveq1 6845 . . . . . . . . . . 11 (β„Ž = (𝑓 ∘ 𝑔) β†’ (β„Žβ€˜(2nd β€˜π‘¦)) = ((𝑓 ∘ 𝑔)β€˜(2nd β€˜π‘¦)))
5150opeq2d 4841 . . . . . . . . . 10 (β„Ž = (𝑓 ∘ 𝑔) β†’ ⟨(1st β€˜π‘¦), (β„Žβ€˜(2nd β€˜π‘¦))⟩ = ⟨(1st β€˜π‘¦), ((𝑓 ∘ 𝑔)β€˜(2nd β€˜π‘¦))⟩)
5251mpteq2dv 5211 . . . . . . . . 9 (β„Ž = (𝑓 ∘ 𝑔) β†’ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (β„Žβ€˜(2nd β€˜π‘¦))⟩) = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), ((𝑓 ∘ 𝑔)β€˜(2nd β€˜π‘¦))⟩))
5349, 52elrnmpt1s 5916 . . . . . . . 8 (((𝑓 ∘ 𝑔) ∈ ran (mRSubstβ€˜π‘‡) ∧ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), ((𝑓 ∘ 𝑔)β€˜(2nd β€˜π‘¦))⟩) ∈ V) β†’ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), ((𝑓 ∘ 𝑔)β€˜(2nd β€˜π‘¦))⟩) ∈ ran (β„Ž ∈ ran (mRSubstβ€˜π‘‡) ↦ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (β„Žβ€˜(2nd β€˜π‘¦))⟩)))
5447, 48, 53sylancl 587 . . . . . . 7 ((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) β†’ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), ((𝑓 ∘ 𝑔)β€˜(2nd β€˜π‘¦))⟩) ∈ ran (β„Ž ∈ ran (mRSubstβ€˜π‘‡) ↦ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (β„Žβ€˜(2nd β€˜π‘¦))⟩)))
551, 2, 3elmsubrn 34186 . . . . . . 7 ran 𝑆 = ran (β„Ž ∈ ran (mRSubstβ€˜π‘‡) ↦ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (β„Žβ€˜(2nd β€˜π‘¦))⟩))
5654, 55eleqtrrdi 2845 . . . . . 6 ((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) β†’ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), ((𝑓 ∘ 𝑔)β€˜(2nd β€˜π‘¦))⟩) ∈ ran 𝑆)
5746, 56eqeltrd 2834 . . . . 5 ((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) β†’ ((π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∘ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)) ∈ ran 𝑆)
58 coeq1 5817 . . . . . . 7 (𝐹 = (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) β†’ (𝐹 ∘ 𝐺) = ((π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∘ 𝐺))
59 coeq2 5818 . . . . . . 7 (𝐺 = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩) β†’ ((π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∘ 𝐺) = ((π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∘ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)))
6058, 59sylan9eq 2793 . . . . . 6 ((𝐹 = (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∧ 𝐺 = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)) β†’ (𝐹 ∘ 𝐺) = ((π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∘ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)))
6160eleq1d 2819 . . . . 5 ((𝐹 = (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∧ 𝐺 = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)) β†’ ((𝐹 ∘ 𝐺) ∈ ran 𝑆 ↔ ((π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∘ (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)) ∈ ran 𝑆))
6257, 61syl5ibrcom 247 . . . 4 ((𝑓 ∈ ran (mRSubstβ€˜π‘‡) ∧ 𝑔 ∈ ran (mRSubstβ€˜π‘‡)) β†’ ((𝐹 = (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∧ 𝐺 = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)) β†’ (𝐹 ∘ 𝐺) ∈ ran 𝑆))
6362rexlimivv 3193 . . 3 (βˆƒπ‘“ ∈ ran (mRSubstβ€˜π‘‡)βˆƒπ‘” ∈ ran (mRSubstβ€˜π‘‡)(𝐹 = (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∧ 𝐺 = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)) β†’ (𝐹 ∘ 𝐺) ∈ ran 𝑆)
6417, 63sylbir 234 . 2 ((βˆƒπ‘“ ∈ ran (mRSubstβ€˜π‘‡)𝐹 = (π‘₯ ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘₯), (π‘“β€˜(2nd β€˜π‘₯))⟩) ∧ βˆƒπ‘” ∈ ran (mRSubstβ€˜π‘‡)𝐺 = (𝑦 ∈ (mExβ€˜π‘‡) ↦ ⟨(1st β€˜π‘¦), (π‘”β€˜(2nd β€˜π‘¦))⟩)) β†’ (𝐹 ∘ 𝐺) ∈ ran 𝑆)
6510, 16, 64syl2anb 599 1 ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) β†’ (𝐹 ∘ 𝐺) ∈ ran 𝑆)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3070  Vcvv 3447  βŸ¨cop 4596   ↦ cmpt 5192   Γ— cxp 5635  ran crn 5638   ∘ ccom 5641  βŸΆwf 6496  β€˜cfv 6500  1st c1st 7923  2nd c2nd 7924  mTCcmtc 34122  mRExcmrex 34124  mExcmex 34125  mRSubstcmrsub 34128  mSubstcmsub 34129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-pm 8774  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-n0 12422  df-xnn0 12494  df-z 12508  df-uz 12772  df-fz 13434  df-fzo 13577  df-seq 13916  df-hash 14240  df-word 14412  df-lsw 14460  df-concat 14468  df-s1 14493  df-substr 14538  df-pfx 14568  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-0g 17331  df-gsum 17332  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-mhm 18609  df-submnd 18610  df-frmd 18667  df-vrmd 18668  df-mrex 34144  df-mex 34145  df-mrsub 34148  df-msub 34149
This theorem is referenced by:  mclsppslem  34241
  Copyright terms: Public domain W3C validator