![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrlbrnmpt2 | Structured version Visualization version GIF version |
Description: A member of a nonempty indexed set of reals is greater than or equal to the set's lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
infxrlbrnmpt2.x | ⊢ Ⅎ𝑥𝜑 |
infxrlbrnmpt2.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
infxrlbrnmpt2.c | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
infxrlbrnmpt2.d | ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
infxrlbrnmpt2.e | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
infxrlbrnmpt2 | ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxrlbrnmpt2.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | eqid 2734 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | infxrlbrnmpt2.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
4 | 1, 2, 3 | rnmptssd 45138 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ*) |
5 | infxrlbrnmpt2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
6 | infxrlbrnmpt2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ*) | |
7 | infxrlbrnmpt2.e | . . . 4 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | |
8 | 2, 7 | elrnmpt1s 5972 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ ℝ*) → 𝐷 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
9 | 5, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐷 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
10 | infxrlb 13372 | . 2 ⊢ ((ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ* ∧ 𝐷 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐷) | |
11 | 4, 9, 10 | syl2anc 584 | 1 ⊢ (𝜑 → inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) ≤ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 Ⅎwnf 1779 ∈ wcel 2105 ⊆ wss 3962 class class class wbr 5147 ↦ cmpt 5230 ran crn 5689 infcinf 9478 ℝ*cxr 11291 < clt 11292 ≤ cle 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 |
This theorem is referenced by: limsuplesup 45654 |
Copyright terms: Public domain | W3C validator |