Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrlbrnmpt2 Structured version   Visualization version   GIF version

Theorem infxrlbrnmpt2 40557
 Description: A member of a nonempty indexed set of reals is greater than or equal to the set's lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infxrlbrnmpt2.x 𝑥𝜑
infxrlbrnmpt2.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
infxrlbrnmpt2.c (𝜑𝐶𝐴)
infxrlbrnmpt2.d (𝜑𝐷 ∈ ℝ*)
infxrlbrnmpt2.e (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
infxrlbrnmpt2 (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem infxrlbrnmpt2
StepHypRef Expression
1 infxrlbrnmpt2.x . . 3 𝑥𝜑
2 eqid 2778 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 infxrlbrnmpt2.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
41, 2, 3rnmptssd 40322 . 2 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
5 infxrlbrnmpt2.c . . 3 (𝜑𝐶𝐴)
6 infxrlbrnmpt2.d . . 3 (𝜑𝐷 ∈ ℝ*)
7 infxrlbrnmpt2.e . . . 4 (𝑥 = 𝐶𝐵 = 𝐷)
82, 7elrnmpt1s 5621 . . 3 ((𝐶𝐴𝐷 ∈ ℝ*) → 𝐷 ∈ ran (𝑥𝐴𝐵))
95, 6, 8syl2anc 579 . 2 (𝜑𝐷 ∈ ran (𝑥𝐴𝐵))
10 infxrlb 12481 . 2 ((ran (𝑥𝐴𝐵) ⊆ ℝ*𝐷 ∈ ran (𝑥𝐴𝐵)) → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐷)
114, 9, 10syl2anc 579 1 (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐷)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1601  Ⅎwnf 1827   ∈ wcel 2107   ⊆ wss 3792   class class class wbr 4888   ↦ cmpt 4967  ran crn 5358  infcinf 8637  ℝ*cxr 10412   < clt 10413   ≤ cle 10414 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-sup 8638  df-inf 8639  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611 This theorem is referenced by:  limsuplesup  40853
 Copyright terms: Public domain W3C validator