Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrlbrnmpt2 Structured version   Visualization version   GIF version

Theorem infxrlbrnmpt2 45325
Description: A member of a nonempty indexed set of reals is greater than or equal to the set's lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infxrlbrnmpt2.x 𝑥𝜑
infxrlbrnmpt2.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
infxrlbrnmpt2.c (𝜑𝐶𝐴)
infxrlbrnmpt2.d (𝜑𝐷 ∈ ℝ*)
infxrlbrnmpt2.e (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
infxrlbrnmpt2 (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem infxrlbrnmpt2
StepHypRef Expression
1 infxrlbrnmpt2.x . . 3 𝑥𝜑
2 eqid 2740 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 infxrlbrnmpt2.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
41, 2, 3rnmptssd 45103 . 2 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
5 infxrlbrnmpt2.c . . 3 (𝜑𝐶𝐴)
6 infxrlbrnmpt2.d . . 3 (𝜑𝐷 ∈ ℝ*)
7 infxrlbrnmpt2.e . . . 4 (𝑥 = 𝐶𝐵 = 𝐷)
82, 7elrnmpt1s 5982 . . 3 ((𝐶𝐴𝐷 ∈ ℝ*) → 𝐷 ∈ ran (𝑥𝐴𝐵))
95, 6, 8syl2anc 583 . 2 (𝜑𝐷 ∈ ran (𝑥𝐴𝐵))
10 infxrlb 13396 . 2 ((ran (𝑥𝐴𝐵) ⊆ ℝ*𝐷 ∈ ran (𝑥𝐴𝐵)) → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐷)
114, 9, 10syl2anc 583 1 (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ*, < ) ≤ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wss 3976   class class class wbr 5166  cmpt 5249  ran crn 5701  infcinf 9510  *cxr 11323   < clt 11324  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523
This theorem is referenced by:  limsuplesup  45620
  Copyright terms: Public domain W3C validator