MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fno1 Structured version   Visualization version   GIF version

Theorem dchrisum0fno1 26564
Description: The sum Σ𝑘𝑥, 𝐹(𝑥) / √𝑘 is divergent (i.e. not eventually bounded). Equation 9.4.30 of [Shapiro], p. 383. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0fno1.a (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ 𝑂(1))
Assertion
Ref Expression
dchrisum0fno1 ¬ 𝜑
Distinct variable groups:   𝑥,𝑘, 1   𝑘,𝐹,𝑥   𝑘,𝑏,𝑞,𝑣,𝑥   𝑘,𝑁,𝑞,𝑥   𝜑,𝑘,𝑥   𝑘,𝑍,𝑥   𝐷,𝑘,𝑥   𝐿,𝑏,𝑘,𝑣,𝑥   𝑋,𝑏,𝑘,𝑣,𝑥
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑥,𝑣,𝑘,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0fno1
Dummy variables 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logno1 25696 . 2 ¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)
2 relogcl 25636 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
32adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
43recnd 10934 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
5 2cnd 11981 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
6 2ne0 12007 . . . . . 6 2 ≠ 0
76a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
84, 5, 7divcan2d 11683 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (2 · ((log‘𝑥) / 2)) = (log‘𝑥))
98mpteq2dva 5170 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · ((log‘𝑥) / 2))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
103rehalfcld 12150 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / 2) ∈ ℝ)
1110recnd 10934 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / 2) ∈ ℂ)
12 rpssre 12666 . . . . . 6 + ⊆ ℝ
13 2cn 11978 . . . . . 6 2 ∈ ℂ
14 o1const 15257 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
1512, 13, 14mp2an 688 . . . . 5 (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1)
1615a1i 11 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
17 1red 10907 . . . . 5 (𝜑 → 1 ∈ ℝ)
18 dchrisum0fno1.a . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ 𝑂(1))
19 sumex 15327 . . . . . 6 Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ V
2019a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ V)
2110adantrr 713 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ∈ ℝ)
222ad2antrl 724 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
23 log1 25646 . . . . . . . . 9 (log‘1) = 0
24 simprr 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
25 1rp 12663 . . . . . . . . . . 11 1 ∈ ℝ+
26 simprl 767 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
27 logleb 25663 . . . . . . . . . . 11 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
2825, 26, 27sylancr 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
2924, 28mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
3023, 29eqbrtrrid 5106 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
31 2re 11977 . . . . . . . . 9 2 ∈ ℝ
3231a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ∈ ℝ)
33 2pos 12006 . . . . . . . . 9 0 < 2
3433a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 < 2)
35 divge0 11774 . . . . . . . 8 ((((log‘𝑥) ∈ ℝ ∧ 0 ≤ (log‘𝑥)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((log‘𝑥) / 2))
3622, 30, 32, 34, 35syl22anc 835 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((log‘𝑥) / 2))
3721, 36absidd 15062 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘𝑥) / 2)) = ((log‘𝑥) / 2))
38 fzfid 13621 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
39 rpvmasum.z . . . . . . . . . . . 12 𝑍 = (ℤ/nℤ‘𝑁)
40 rpvmasum.l . . . . . . . . . . . 12 𝐿 = (ℤRHom‘𝑍)
41 rpvmasum.a . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
42 rpvmasum2.g . . . . . . . . . . . 12 𝐺 = (DChr‘𝑁)
43 rpvmasum2.d . . . . . . . . . . . 12 𝐷 = (Base‘𝐺)
44 rpvmasum2.1 . . . . . . . . . . . 12 1 = (0g𝐺)
45 dchrisum0f.f . . . . . . . . . . . 12 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
46 dchrisum0f.x . . . . . . . . . . . 12 (𝜑𝑋𝐷)
47 dchrisum0flb.r . . . . . . . . . . . 12 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
4839, 40, 41, 42, 43, 44, 45, 46, 47dchrisum0ff 26560 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ)
4948adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐹:ℕ⟶ℝ)
50 elfznn 13214 . . . . . . . . . 10 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
51 ffvelrn 6941 . . . . . . . . . 10 ((𝐹:ℕ⟶ℝ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
5249, 50, 51syl2an 595 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (𝐹𝑘) ∈ ℝ)
5350adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
5453nnrpd 12699 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℝ+)
5554rpsqrtcld 15051 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℝ+)
5652, 55rerpdivcld 12732 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((𝐹𝑘) / (√‘𝑘)) ∈ ℝ)
5738, 56fsumrecl 15374 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ ℝ)
5857recnd 10934 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ ℂ)
5958abscld 15076 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ ℝ)
60 fzfid 13621 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘(√‘𝑥))) ∈ Fin)
61 elfznn 13214 . . . . . . . . . . 11 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → 𝑖 ∈ ℕ)
6261adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑖 ∈ ℕ)
6362nnrecred 11954 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (1 / 𝑖) ∈ ℝ)
6460, 63fsumrecl 15374 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖) ∈ ℝ)
65 logsqrt 25764 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘(√‘𝑥)) = ((log‘𝑥) / 2))
6665ad2antrl 724 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(√‘𝑥)) = ((log‘𝑥) / 2))
67 rpsqrtcl 14904 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
6867ad2antrl 724 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (√‘𝑥) ∈ ℝ+)
69 harmoniclbnd 26063 . . . . . . . . . 10 ((√‘𝑥) ∈ ℝ+ → (log‘(√‘𝑥)) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
7068, 69syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(√‘𝑥)) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
7166, 70eqbrtrrd 5094 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
72 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) = (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))
73 ovex 7288 . . . . . . . . . . . . . . . . 17 (𝑚↑2) ∈ V
7472, 73elrnmpti 5858 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ↔ ∃𝑚 ∈ (1...(⌊‘(√‘𝑥)))𝑘 = (𝑚↑2))
75 elfznn 13214 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → 𝑚 ∈ ℕ)
7675adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ∈ ℕ)
7776nnrpd 12699 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ∈ ℝ+)
7877rprege0d 12708 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
79 sqrtsq 14909 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) → (√‘(𝑚↑2)) = 𝑚)
8078, 79syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑚↑2)) = 𝑚)
8180, 76eqeltrd 2839 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑚↑2)) ∈ ℕ)
82 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚↑2) → (√‘𝑘) = (√‘(𝑚↑2)))
8382eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚↑2) → ((√‘𝑘) ∈ ℕ ↔ (√‘(𝑚↑2)) ∈ ℕ))
8481, 83syl5ibrcom 246 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑘 = (𝑚↑2) → (√‘𝑘) ∈ ℕ))
8584rexlimdva 3212 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∃𝑚 ∈ (1...(⌊‘(√‘𝑥)))𝑘 = (𝑚↑2) → (√‘𝑘) ∈ ℕ))
8674, 85syl5bi 241 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) → (√‘𝑘) ∈ ℕ))
8786imp 406 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (√‘𝑘) ∈ ℕ)
8887iftrued 4464 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → if((√‘𝑘) ∈ ℕ, 1, 0) = 1)
8988oveq1d 7270 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = (1 / (√‘𝑘)))
9089sumeq2dv 15343 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(1 / (√‘𝑘)))
91 fveq2 6756 . . . . . . . . . . . . 13 (𝑘 = (𝑖↑2) → (√‘𝑘) = (√‘(𝑖↑2)))
9291oveq2d 7271 . . . . . . . . . . . 12 (𝑘 = (𝑖↑2) → (1 / (√‘𝑘)) = (1 / (√‘(𝑖↑2))))
9376nnsqcld 13887 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ∈ ℕ)
9468rpred 12701 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (√‘𝑥) ∈ ℝ)
95 fznnfl 13510 . . . . . . . . . . . . . . . . . . . 20 ((√‘𝑥) ∈ ℝ → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (√‘𝑥))))
9694, 95syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (√‘𝑥))))
9796simplbda 499 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ≤ (√‘𝑥))
9868adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘𝑥) ∈ ℝ+)
9998rprege0d 12708 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((√‘𝑥) ∈ ℝ ∧ 0 ≤ (√‘𝑥)))
100 le2sq 13781 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ ((√‘𝑥) ∈ ℝ ∧ 0 ≤ (√‘𝑥))) → (𝑚 ≤ (√‘𝑥) ↔ (𝑚↑2) ≤ ((√‘𝑥)↑2)))
10178, 99, 100syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚 ≤ (√‘𝑥) ↔ (𝑚↑2) ≤ ((√‘𝑥)↑2)))
10297, 101mpbid 231 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ≤ ((√‘𝑥)↑2))
10326rpred 12701 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
104103adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑥 ∈ ℝ)
105104recnd 10934 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑥 ∈ ℂ)
106105sqsqrtd 15079 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((√‘𝑥)↑2) = 𝑥)
107102, 106breqtrd 5096 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ≤ 𝑥)
108 fznnfl 13510 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → ((𝑚↑2) ∈ (1...(⌊‘𝑥)) ↔ ((𝑚↑2) ∈ ℕ ∧ (𝑚↑2) ≤ 𝑥)))
109104, 108syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) ∈ (1...(⌊‘𝑥)) ↔ ((𝑚↑2) ∈ ℕ ∧ (𝑚↑2) ≤ 𝑥)))
11093, 107, 109mpbir2and 709 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ∈ (1...(⌊‘𝑥)))
111110ex 412 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → (𝑚↑2) ∈ (1...(⌊‘𝑥))))
11275nnrpd 12699 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → 𝑚 ∈ ℝ+)
113112rprege0d 12708 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
11461nnrpd 12699 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → 𝑖 ∈ ℝ+)
115114rprege0d 12708 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖))
116 sq11 13778 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖)) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖))
117113, 115, 116syl2an 595 . . . . . . . . . . . . . . 15 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖))
118117a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖)))
119111, 118dom2lem 8735 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)))
120 f1f1orn 6711 . . . . . . . . . . . . 13 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1-onto→ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
121119, 120syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1-onto→ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
122 oveq1 7262 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚↑2) = (𝑖↑2))
123122, 72, 73fvmpt3i 6862 . . . . . . . . . . . . 13 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))‘𝑖) = (𝑖↑2))
124123adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))‘𝑖) = (𝑖↑2))
125 f1f 6654 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))⟶(1...(⌊‘𝑥)))
126 frn 6591 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))⟶(1...(⌊‘𝑥)) → ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ⊆ (1...(⌊‘𝑥)))
127119, 125, 1263syl 18 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ⊆ (1...(⌊‘𝑥)))
128127sselda 3917 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → 𝑘 ∈ (1...(⌊‘𝑥)))
129 1re 10906 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
130 0re 10908 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
131129, 130ifcli 4503 . . . . . . . . . . . . . . . 16 if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ
132 rerpdivcl 12689 . . . . . . . . . . . . . . . 16 ((if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ ∧ (√‘𝑘) ∈ ℝ+) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℝ)
133131, 55, 132sylancr 586 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℝ)
134133recnd 10934 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℂ)
135128, 134syldan 590 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℂ)
13689, 135eqeltrrd 2840 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (1 / (√‘𝑘)) ∈ ℂ)
13792, 60, 121, 124, 136fsumf1o 15363 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(1 / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))))
13890, 137eqtrd 2778 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))))
139 eldif 3893 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) ↔ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ ¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))))
14050ad2antrl 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℕ)
141140nncnd 11919 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℂ)
142141sqsqrtd 15079 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) = 𝑘)
143 simprr 769 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ∈ ℕ)
144 fznnfl 13510 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ → (𝑘 ∈ (1...(⌊‘𝑥)) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑥)))
145103, 144syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑘 ∈ (1...(⌊‘𝑥)) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑥)))
146145simplbda 499 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘𝑥)
147146adantrr 713 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘𝑥)
148140nnrpd 12699 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℝ+)
149148rprege0d 12708 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
15026adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑥 ∈ ℝ+)
151150rprege0d 12708 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
152 sqrtle 14900 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑘𝑥 ↔ (√‘𝑘) ≤ (√‘𝑥)))
153149, 151, 152syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑘𝑥 ↔ (√‘𝑘) ≤ (√‘𝑥)))
154147, 153mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ≤ (√‘𝑥))
15568adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑥) ∈ ℝ+)
156155rpred 12701 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑥) ∈ ℝ)
157 fznnfl 13510 . . . . . . . . . . . . . . . . . . . . . 22 ((√‘𝑥) ∈ ℝ → ((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ↔ ((√‘𝑘) ∈ ℕ ∧ (√‘𝑘) ≤ (√‘𝑥))))
158156, 157syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ↔ ((√‘𝑘) ∈ ℕ ∧ (√‘𝑘) ≤ (√‘𝑥))))
159143, 154, 158mpbir2and 709 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))))
160142, 140eqeltrd 2839 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) ∈ ℕ)
161 oveq1 7262 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = (√‘𝑘) → (𝑚↑2) = ((√‘𝑘)↑2))
16272, 161elrnmpt1s 5855 . . . . . . . . . . . . . . . . . . . 20 (((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ∧ ((√‘𝑘)↑2) ∈ ℕ) → ((√‘𝑘)↑2) ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
163159, 160, 162syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
164142, 163eqeltrrd 2840 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
165164expr 456 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((√‘𝑘) ∈ ℕ → 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))))
166165con3d 152 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) → ¬ (√‘𝑘) ∈ ℕ))
167166impr 454 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ ¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ¬ (√‘𝑘) ∈ ℕ)
168139, 167sylan2b 593 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ¬ (√‘𝑘) ∈ ℕ)
169168iffalsed 4467 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → if((√‘𝑘) ∈ ℕ, 1, 0) = 0)
170169oveq1d 7270 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = (0 / (√‘𝑘)))
171 eldifi 4057 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → 𝑘 ∈ (1...(⌊‘𝑥)))
172171, 55sylan2 592 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (√‘𝑘) ∈ ℝ+)
173172rpcnne0d 12710 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ((√‘𝑘) ∈ ℂ ∧ (√‘𝑘) ≠ 0))
174 div0 11593 . . . . . . . . . . . . 13 (((√‘𝑘) ∈ ℂ ∧ (√‘𝑘) ≠ 0) → (0 / (√‘𝑘)) = 0)
175173, 174syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (0 / (√‘𝑘)) = 0)
176170, 175eqtrd 2778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = 0)
177127, 135, 176, 38fsumss 15365 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)))
17862nnrpd 12699 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑖 ∈ ℝ+)
179178rprege0d 12708 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖))
180 sqrtsq 14909 . . . . . . . . . . . . 13 ((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) → (√‘(𝑖↑2)) = 𝑖)
181179, 180syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑖↑2)) = 𝑖)
182181oveq2d 7271 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (1 / (√‘(𝑖↑2))) = (1 / 𝑖))
183182sumeq2dv 15343 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
184138, 177, 1833eqtr3d 2786 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
185131a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ)
18641ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈ ℕ)
18746ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
18847ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑋:(Base‘𝑍)⟶ℝ)
18939, 40, 186, 42, 43, 44, 45, 187, 188, 53dchrisum0flb 26563 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → if((√‘𝑘) ∈ ℕ, 1, 0) ≤ (𝐹𝑘))
190185, 52, 55, 189lediv1dd 12759 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ≤ ((𝐹𝑘) / (√‘𝑘)))
19138, 133, 56, 190fsumle 15439 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
192184, 191eqbrtrrd 5094 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
19321, 64, 57, 71, 192letrd 11062 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
19457leabsd 15054 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19521, 57, 59, 193, 194letrd 11062 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19637, 195eqbrtrd 5092 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘𝑥) / 2)) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19717, 18, 20, 11, 196o1le 15292 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 2)) ∈ 𝑂(1))
1985, 11, 16, 197o1mul2 15262 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · ((log‘𝑥) / 2))) ∈ 𝑂(1))
1999, 198eqeltrrd 2840 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1))
2001, 199mto 196 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  ifcif 4456   class class class wbr 5070  cmpt 5153  ran crn 5581  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562  cn 11903  2c2 11958  +crp 12659  ...cfz 13168  cfl 13438  cexp 13710  csqrt 14872  abscabs 14873  𝑂(1)co1 15123  Σcsu 15325  cdvds 15891  Basecbs 16840  0gc0g 17067  ℤRHomczrh 20613  ℤ/nczn 20616  logclog 25615  DChrcdchr 26285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-o1 15127  df-lo1 15128  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-numer 16367  df-denom 16368  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-qus 17137  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-nsg 18668  df-eqg 18669  df-ghm 18747  df-cntz 18838  df-od 19051  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-2idl 20416  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-zn 20620  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-ulm 25441  df-log 25617  df-cxp 25618  df-atan 25922  df-em 26047  df-dchr 26286
This theorem is referenced by:  dchrisum0  26573
  Copyright terms: Public domain W3C validator