Step | Hyp | Ref
| Expression |
1 | | logno1 25696 |
. 2
⊢ ¬
(𝑥 ∈
ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1) |
2 | | relogcl 25636 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
3 | 2 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(log‘𝑥) ∈
ℝ) |
4 | 3 | recnd 10934 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(log‘𝑥) ∈
ℂ) |
5 | | 2cnd 11981 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 2 ∈
ℂ) |
6 | | 2ne0 12007 |
. . . . . 6
⊢ 2 ≠
0 |
7 | 6 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 2 ≠
0) |
8 | 4, 5, 7 | divcan2d 11683 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· ((log‘𝑥) /
2)) = (log‘𝑥)) |
9 | 8 | mpteq2dva 5170 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (2
· ((log‘𝑥) /
2))) = (𝑥 ∈
ℝ+ ↦ (log‘𝑥))) |
10 | 3 | rehalfcld 12150 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((log‘𝑥) / 2) ∈
ℝ) |
11 | 10 | recnd 10934 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((log‘𝑥) / 2) ∈
ℂ) |
12 | | rpssre 12666 |
. . . . . 6
⊢
ℝ+ ⊆ ℝ |
13 | | 2cn 11978 |
. . . . . 6
⊢ 2 ∈
ℂ |
14 | | o1const 15257 |
. . . . . 6
⊢
((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) →
(𝑥 ∈
ℝ+ ↦ 2) ∈ 𝑂(1)) |
15 | 12, 13, 14 | mp2an 688 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
↦ 2) ∈ 𝑂(1) |
16 | 15 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈
𝑂(1)) |
17 | | 1red 10907 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℝ) |
18 | | dchrisum0fno1.a |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑘 ∈
(1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘))) ∈ 𝑂(1)) |
19 | | sumex 15327 |
. . . . . 6
⊢
Σ𝑘 ∈
(1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘)) ∈ V |
20 | 19 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑘 ∈
(1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘)) ∈ V) |
21 | 10 | adantrr 713 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
((log‘𝑥) / 2) ∈
ℝ) |
22 | 2 | ad2antrl 724 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (log‘𝑥) ∈
ℝ) |
23 | | log1 25646 |
. . . . . . . . 9
⊢
(log‘1) = 0 |
24 | | simprr 769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 1 ≤ 𝑥) |
25 | | 1rp 12663 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ+ |
26 | | simprl 767 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝑥 ∈
ℝ+) |
27 | | logleb 25663 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ+ ∧ 𝑥 ∈ ℝ+) → (1 ≤
𝑥 ↔ (log‘1) ≤
(log‘𝑥))) |
28 | 25, 26, 27 | sylancr 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤
(log‘𝑥))) |
29 | 24, 28 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (log‘1)
≤ (log‘𝑥)) |
30 | 23, 29 | eqbrtrrid 5106 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 0 ≤
(log‘𝑥)) |
31 | | 2re 11977 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
32 | 31 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 2 ∈
ℝ) |
33 | | 2pos 12006 |
. . . . . . . . 9
⊢ 0 <
2 |
34 | 33 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 0 <
2) |
35 | | divge0 11774 |
. . . . . . . 8
⊢
((((log‘𝑥)
∈ ℝ ∧ 0 ≤ (log‘𝑥)) ∧ (2 ∈ ℝ ∧ 0 < 2))
→ 0 ≤ ((log‘𝑥) / 2)) |
36 | 22, 30, 32, 34, 35 | syl22anc 835 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 0 ≤
((log‘𝑥) /
2)) |
37 | 21, 36 | absidd 15062 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘((log‘𝑥) /
2)) = ((log‘𝑥) /
2)) |
38 | | fzfid 13621 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(1...(⌊‘𝑥))
∈ Fin) |
39 | | rpvmasum.z |
. . . . . . . . . . . 12
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
40 | | rpvmasum.l |
. . . . . . . . . . . 12
⊢ 𝐿 = (ℤRHom‘𝑍) |
41 | | rpvmasum.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℕ) |
42 | | rpvmasum2.g |
. . . . . . . . . . . 12
⊢ 𝐺 = (DChr‘𝑁) |
43 | | rpvmasum2.d |
. . . . . . . . . . . 12
⊢ 𝐷 = (Base‘𝐺) |
44 | | rpvmasum2.1 |
. . . . . . . . . . . 12
⊢ 1 =
(0g‘𝐺) |
45 | | dchrisum0f.f |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) |
46 | | dchrisum0f.x |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
47 | | dchrisum0flb.r |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) |
48 | 39, 40, 41, 42, 43, 44, 45, 46, 47 | dchrisum0ff 26560 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
49 | 48 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝐹:ℕ⟶ℝ) |
50 | | elfznn 13214 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(1...(⌊‘𝑥))
→ 𝑘 ∈
ℕ) |
51 | | ffvelrn 6941 |
. . . . . . . . . 10
⊢ ((𝐹:ℕ⟶ℝ ∧
𝑘 ∈ ℕ) →
(𝐹‘𝑘) ∈ ℝ) |
52 | 49, 50, 51 | syl2an 595 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (𝐹‘𝑘) ∈
ℝ) |
53 | 50 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ 𝑘 ∈
ℕ) |
54 | 53 | nnrpd 12699 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ 𝑘 ∈
ℝ+) |
55 | 54 | rpsqrtcld 15051 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (√‘𝑘)
∈ ℝ+) |
56 | 52, 55 | rerpdivcld 12732 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ ((𝐹‘𝑘) / (√‘𝑘)) ∈
ℝ) |
57 | 38, 56 | fsumrecl 15374 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑘 ∈
(1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘)) ∈ ℝ) |
58 | 57 | recnd 10934 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑘 ∈
(1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘)) ∈ ℂ) |
59 | 58 | abscld 15076 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘Σ𝑘 ∈
(1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘))) ∈ ℝ) |
60 | | fzfid 13621 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(1...(⌊‘(√‘𝑥))) ∈ Fin) |
61 | | elfznn 13214 |
. . . . . . . . . . 11
⊢ (𝑖 ∈
(1...(⌊‘(√‘𝑥))) → 𝑖 ∈ ℕ) |
62 | 61 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑖 ∈
(1...(⌊‘(√‘𝑥)))) → 𝑖 ∈ ℕ) |
63 | 62 | nnrecred 11954 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑖 ∈
(1...(⌊‘(√‘𝑥)))) → (1 / 𝑖) ∈ ℝ) |
64 | 60, 63 | fsumrecl 15374 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑖 ∈
(1...(⌊‘(√‘𝑥)))(1 / 𝑖) ∈ ℝ) |
65 | | logsqrt 25764 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (log‘(√‘𝑥)) = ((log‘𝑥) / 2)) |
66 | 65 | ad2antrl 724 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(log‘(√‘𝑥)) = ((log‘𝑥) / 2)) |
67 | | rpsqrtcl 14904 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (√‘𝑥)
∈ ℝ+) |
68 | 67 | ad2antrl 724 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(√‘𝑥) ∈
ℝ+) |
69 | | harmoniclbnd 26063 |
. . . . . . . . . 10
⊢
((√‘𝑥)
∈ ℝ+ → (log‘(√‘𝑥)) ≤ Σ𝑖 ∈
(1...(⌊‘(√‘𝑥)))(1 / 𝑖)) |
70 | 68, 69 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(log‘(√‘𝑥)) ≤ Σ𝑖 ∈
(1...(⌊‘(√‘𝑥)))(1 / 𝑖)) |
71 | 66, 70 | eqbrtrrd 5094 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
((log‘𝑥) / 2) ≤
Σ𝑖 ∈
(1...(⌊‘(√‘𝑥)))(1 / 𝑖)) |
72 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) = (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) |
73 | | ovex 7288 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚↑2) ∈
V |
74 | 72, 73 | elrnmpti 5858 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ↔ ∃𝑚 ∈
(1...(⌊‘(√‘𝑥)))𝑘 = (𝑚↑2)) |
75 | | elfznn 13214 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈
(1...(⌊‘(√‘𝑥))) → 𝑚 ∈ ℕ) |
76 | 75 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → 𝑚 ∈ ℕ) |
77 | 76 | nnrpd 12699 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → 𝑚 ∈ ℝ+) |
78 | 77 | rprege0d 12708 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚)) |
79 | | sqrtsq 14909 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ ℝ ∧ 0 ≤
𝑚) →
(√‘(𝑚↑2))
= 𝑚) |
80 | 78, 79 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → (√‘(𝑚↑2)) = 𝑚) |
81 | 80, 76 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → (√‘(𝑚↑2)) ∈
ℕ) |
82 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑚↑2) → (√‘𝑘) = (√‘(𝑚↑2))) |
83 | 82 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑚↑2) → ((√‘𝑘) ∈ ℕ ↔
(√‘(𝑚↑2))
∈ ℕ)) |
84 | 81, 83 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → (𝑘 = (𝑚↑2) → (√‘𝑘) ∈
ℕ)) |
85 | 84 | rexlimdva 3212 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (∃𝑚 ∈
(1...(⌊‘(√‘𝑥)))𝑘 = (𝑚↑2) → (√‘𝑘) ∈
ℕ)) |
86 | 74, 85 | syl5bi 241 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (𝑘 ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) → (√‘𝑘) ∈
ℕ)) |
87 | 86 | imp 406 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (√‘𝑘) ∈
ℕ) |
88 | 87 | iftrued 4464 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → if((√‘𝑘) ∈ ℕ, 1, 0) =
1) |
89 | 88 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (if((√‘𝑘) ∈ ℕ, 1, 0) /
(√‘𝑘)) = (1 /
(√‘𝑘))) |
90 | 89 | sumeq2dv 15343 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) /
(√‘𝑘)) =
Σ𝑘 ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(1 / (√‘𝑘))) |
91 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑖↑2) → (√‘𝑘) = (√‘(𝑖↑2))) |
92 | 91 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑖↑2) → (1 / (√‘𝑘)) = (1 / (√‘(𝑖↑2)))) |
93 | 76 | nnsqcld 13887 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ∈ ℕ) |
94 | 68 | rpred 12701 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(√‘𝑥) ∈
ℝ) |
95 | | fznnfl 13510 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((√‘𝑥)
∈ ℝ → (𝑚
∈ (1...(⌊‘(√‘𝑥))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (√‘𝑥)))) |
96 | 94, 95 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (√‘𝑥)))) |
97 | 96 | simplbda 499 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → 𝑚 ≤ (√‘𝑥)) |
98 | 68 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → (√‘𝑥) ∈
ℝ+) |
99 | 98 | rprege0d 12708 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → ((√‘𝑥) ∈ ℝ ∧ 0 ≤
(√‘𝑥))) |
100 | | le2sq 13781 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑚 ∈ ℝ ∧ 0 ≤
𝑚) ∧
((√‘𝑥) ∈
ℝ ∧ 0 ≤ (√‘𝑥))) → (𝑚 ≤ (√‘𝑥) ↔ (𝑚↑2) ≤ ((√‘𝑥)↑2))) |
101 | 78, 99, 100 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → (𝑚 ≤ (√‘𝑥) ↔ (𝑚↑2) ≤ ((√‘𝑥)↑2))) |
102 | 97, 101 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ≤ ((√‘𝑥)↑2)) |
103 | 26 | rpred 12701 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝑥 ∈
ℝ) |
104 | 103 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → 𝑥 ∈ ℝ) |
105 | 104 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → 𝑥 ∈ ℂ) |
106 | 105 | sqsqrtd 15079 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → ((√‘𝑥)↑2) = 𝑥) |
107 | 102, 106 | breqtrd 5096 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ≤ 𝑥) |
108 | | fznnfl 13510 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℝ → ((𝑚↑2) ∈
(1...(⌊‘𝑥))
↔ ((𝑚↑2) ∈
ℕ ∧ (𝑚↑2)
≤ 𝑥))) |
109 | 104, 108 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) ∈ (1...(⌊‘𝑥)) ↔ ((𝑚↑2) ∈ ℕ ∧ (𝑚↑2) ≤ 𝑥))) |
110 | 93, 107, 109 | mpbir2and 709 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑚 ∈
(1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ∈ (1...(⌊‘𝑥))) |
111 | 110 | ex 412 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (𝑚 ∈
(1...(⌊‘(√‘𝑥))) → (𝑚↑2) ∈ (1...(⌊‘𝑥)))) |
112 | 75 | nnrpd 12699 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈
(1...(⌊‘(√‘𝑥))) → 𝑚 ∈ ℝ+) |
113 | 112 | rprege0d 12708 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈
(1...(⌊‘(√‘𝑥))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚)) |
114 | 61 | nnrpd 12699 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈
(1...(⌊‘(√‘𝑥))) → 𝑖 ∈ ℝ+) |
115 | 114 | rprege0d 12708 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈
(1...(⌊‘(√‘𝑥))) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖)) |
116 | | sq11 13778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℝ ∧ 0 ≤
𝑚) ∧ (𝑖 ∈ ℝ ∧ 0 ≤
𝑖)) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖)) |
117 | 113, 115,
116 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈
(1...(⌊‘(√‘𝑥))) ∧ 𝑖 ∈
(1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖)) |
118 | 117 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → ((𝑚 ∈
(1...(⌊‘(√‘𝑥))) ∧ 𝑖 ∈
(1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖))) |
119 | 111, 118 | dom2lem 8735 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥))) |
120 | | f1f1orn 6711 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1-onto→ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) |
121 | 119, 120 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1-onto→ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) |
122 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑖 → (𝑚↑2) = (𝑖↑2)) |
123 | 122, 72, 73 | fvmpt3i 6862 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈
(1...(⌊‘(√‘𝑥))) → ((𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))‘𝑖) = (𝑖↑2)) |
124 | 123 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑖 ∈
(1...(⌊‘(√‘𝑥)))) → ((𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))‘𝑖) = (𝑖↑2)) |
125 | | f1f 6654 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))⟶(1...(⌊‘𝑥))) |
126 | | frn 6591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))⟶(1...(⌊‘𝑥)) → ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ⊆ (1...(⌊‘𝑥))) |
127 | 119, 125,
126 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ⊆ (1...(⌊‘𝑥))) |
128 | 127 | sselda 3917 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → 𝑘 ∈ (1...(⌊‘𝑥))) |
129 | | 1re 10906 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ |
130 | | 0re 10908 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ |
131 | 129, 130 | ifcli 4503 |
. . . . . . . . . . . . . . . 16
⊢
if((√‘𝑘)
∈ ℕ, 1, 0) ∈ ℝ |
132 | | rerpdivcl 12689 |
. . . . . . . . . . . . . . . 16
⊢
((if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ ∧
(√‘𝑘) ∈
ℝ+) → (if((√‘𝑘) ∈ ℕ, 1, 0) /
(√‘𝑘)) ∈
ℝ) |
133 | 131, 55, 132 | sylancr 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (if((√‘𝑘) ∈ ℕ, 1, 0) /
(√‘𝑘)) ∈
ℝ) |
134 | 133 | recnd 10934 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (if((√‘𝑘) ∈ ℕ, 1, 0) /
(√‘𝑘)) ∈
ℂ) |
135 | 128, 134 | syldan 590 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (if((√‘𝑘) ∈ ℕ, 1, 0) /
(√‘𝑘)) ∈
ℂ) |
136 | 89, 135 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (1 / (√‘𝑘)) ∈
ℂ) |
137 | 92, 60, 121, 124, 136 | fsumf1o 15363 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(1 / (√‘𝑘)) = Σ𝑖 ∈
(1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2)))) |
138 | 90, 137 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) /
(√‘𝑘)) =
Σ𝑖 ∈
(1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2)))) |
139 | | eldif 3893 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈
((1...(⌊‘𝑥))
∖ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) ↔ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ ¬ 𝑘 ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) |
140 | 50 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → 𝑘
∈ ℕ) |
141 | 140 | nncnd 11919 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → 𝑘
∈ ℂ) |
142 | 141 | sqsqrtd 15079 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → ((√‘𝑘)↑2) = 𝑘) |
143 | | simprr 769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → (√‘𝑘) ∈ ℕ) |
144 | | fznnfl 13510 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℝ → (𝑘 ∈
(1...(⌊‘𝑥))
↔ (𝑘 ∈ ℕ
∧ 𝑘 ≤ 𝑥))) |
145 | 103, 144 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (𝑘 ∈
(1...(⌊‘𝑥))
↔ (𝑘 ∈ ℕ
∧ 𝑘 ≤ 𝑥))) |
146 | 145 | simplbda 499 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ 𝑘 ≤ 𝑥) |
147 | 146 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → 𝑘
≤ 𝑥) |
148 | 140 | nnrpd 12699 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → 𝑘
∈ ℝ+) |
149 | 148 | rprege0d 12708 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → (𝑘
∈ ℝ ∧ 0 ≤ 𝑘)) |
150 | 26 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → 𝑥
∈ ℝ+) |
151 | 150 | rprege0d 12708 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → (𝑥
∈ ℝ ∧ 0 ≤ 𝑥)) |
152 | | sqrtle 14900 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑘 ∈ ℝ ∧ 0 ≤
𝑘) ∧ (𝑥 ∈ ℝ ∧ 0 ≤
𝑥)) → (𝑘 ≤ 𝑥 ↔ (√‘𝑘) ≤ (√‘𝑥))) |
153 | 149, 151,
152 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → (𝑘
≤ 𝑥 ↔
(√‘𝑘) ≤
(√‘𝑥))) |
154 | 147, 153 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → (√‘𝑘) ≤ (√‘𝑥)) |
155 | 68 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → (√‘𝑥) ∈
ℝ+) |
156 | 155 | rpred 12701 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → (√‘𝑥) ∈ ℝ) |
157 | | fznnfl 13510 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((√‘𝑥)
∈ ℝ → ((√‘𝑘) ∈
(1...(⌊‘(√‘𝑥))) ↔ ((√‘𝑘) ∈ ℕ ∧ (√‘𝑘) ≤ (√‘𝑥)))) |
158 | 156, 157 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → ((√‘𝑘) ∈
(1...(⌊‘(√‘𝑥))) ↔ ((√‘𝑘) ∈ ℕ ∧ (√‘𝑘) ≤ (√‘𝑥)))) |
159 | 143, 154,
158 | mpbir2and 709 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → (√‘𝑘) ∈
(1...(⌊‘(√‘𝑥)))) |
160 | 142, 140 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → ((√‘𝑘)↑2) ∈ ℕ) |
161 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = (√‘𝑘) → (𝑚↑2) = ((√‘𝑘)↑2)) |
162 | 72, 161 | elrnmpt1s 5855 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((√‘𝑘)
∈ (1...(⌊‘(√‘𝑥))) ∧ ((√‘𝑘)↑2) ∈ ℕ) →
((√‘𝑘)↑2)
∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) |
163 | 159, 160,
162 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → ((√‘𝑘)↑2) ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) |
164 | 142, 163 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ (√‘𝑘)
∈ ℕ)) → 𝑘
∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) |
165 | 164 | expr 456 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ ((√‘𝑘)
∈ ℕ → 𝑘
∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) |
166 | 165 | con3d 152 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (¬ 𝑘 ∈ ran
(𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) → ¬ (√‘𝑘) ∈
ℕ)) |
167 | 166 | impr 454 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ ¬ 𝑘 ∈ ran
(𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ¬ (√‘𝑘) ∈
ℕ) |
168 | 139, 167 | sylan2b 593 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
((1...(⌊‘𝑥))
∖ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ¬ (√‘𝑘) ∈
ℕ) |
169 | 168 | iffalsed 4467 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
((1...(⌊‘𝑥))
∖ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → if((√‘𝑘) ∈ ℕ, 1, 0) =
0) |
170 | 169 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
((1...(⌊‘𝑥))
∖ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (if((√‘𝑘) ∈ ℕ, 1, 0) /
(√‘𝑘)) = (0 /
(√‘𝑘))) |
171 | | eldifi 4057 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈
((1...(⌊‘𝑥))
∖ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → 𝑘 ∈ (1...(⌊‘𝑥))) |
172 | 171, 55 | sylan2 592 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
((1...(⌊‘𝑥))
∖ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (√‘𝑘) ∈
ℝ+) |
173 | 172 | rpcnne0d 12710 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
((1...(⌊‘𝑥))
∖ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ((√‘𝑘) ∈ ℂ ∧
(√‘𝑘) ≠
0)) |
174 | | div0 11593 |
. . . . . . . . . . . . 13
⊢
(((√‘𝑘)
∈ ℂ ∧ (√‘𝑘) ≠ 0) → (0 / (√‘𝑘)) = 0) |
175 | 173, 174 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
((1...(⌊‘𝑥))
∖ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (0 / (√‘𝑘)) = 0) |
176 | 170, 175 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
((1...(⌊‘𝑥))
∖ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (if((√‘𝑘) ∈ ℕ, 1, 0) /
(√‘𝑘)) =
0) |
177 | 127, 135,
176, 38 | fsumss 15365 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈
(1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) /
(√‘𝑘)) =
Σ𝑘 ∈
(1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) /
(√‘𝑘))) |
178 | 62 | nnrpd 12699 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑖 ∈
(1...(⌊‘(√‘𝑥)))) → 𝑖 ∈ ℝ+) |
179 | 178 | rprege0d 12708 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑖 ∈
(1...(⌊‘(√‘𝑥)))) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖)) |
180 | | sqrtsq 14909 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ ℝ ∧ 0 ≤
𝑖) →
(√‘(𝑖↑2))
= 𝑖) |
181 | 179, 180 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑖 ∈
(1...(⌊‘(√‘𝑥)))) → (√‘(𝑖↑2)) = 𝑖) |
182 | 181 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑖 ∈
(1...(⌊‘(√‘𝑥)))) → (1 / (√‘(𝑖↑2))) = (1 / 𝑖)) |
183 | 182 | sumeq2dv 15343 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑖 ∈
(1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))) = Σ𝑖 ∈
(1...(⌊‘(√‘𝑥)))(1 / 𝑖)) |
184 | 138, 177,
183 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑘 ∈
(1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) /
(√‘𝑘)) =
Σ𝑖 ∈
(1...(⌊‘(√‘𝑥)))(1 / 𝑖)) |
185 | 131 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ if((√‘𝑘)
∈ ℕ, 1, 0) ∈ ℝ) |
186 | 41 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ 𝑁 ∈
ℕ) |
187 | 46 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ 𝑋 ∈ 𝐷) |
188 | 47 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ 𝑋:(Base‘𝑍)⟶ℝ) |
189 | 39, 40, 186, 42, 43, 44, 45, 187, 188, 53 | dchrisum0flb 26563 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ if((√‘𝑘)
∈ ℕ, 1, 0) ≤ (𝐹‘𝑘)) |
190 | 185, 52, 55, 189 | lediv1dd 12759 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (if((√‘𝑘) ∈ ℕ, 1, 0) /
(√‘𝑘)) ≤
((𝐹‘𝑘) / (√‘𝑘))) |
191 | 38, 133, 56, 190 | fsumle 15439 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑘 ∈
(1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) /
(√‘𝑘)) ≤
Σ𝑘 ∈
(1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘))) |
192 | 184, 191 | eqbrtrrd 5094 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑖 ∈
(1...(⌊‘(√‘𝑥)))(1 / 𝑖) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘))) |
193 | 21, 64, 57, 71, 192 | letrd 11062 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
((log‘𝑥) / 2) ≤
Σ𝑘 ∈
(1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘))) |
194 | 57 | leabsd 15054 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑘 ∈
(1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘)) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘)))) |
195 | 21, 57, 59, 193, 194 | letrd 11062 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
((log‘𝑥) / 2) ≤
(abs‘Σ𝑘 ∈
(1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘)))) |
196 | 37, 195 | eqbrtrd 5092 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘((log‘𝑥) /
2)) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹‘𝑘) / (√‘𝑘)))) |
197 | 17, 18, 20, 11, 196 | o1le 15292 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((log‘𝑥) / 2)) ∈
𝑂(1)) |
198 | 5, 11, 16, 197 | o1mul2 15262 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (2
· ((log‘𝑥) /
2))) ∈ 𝑂(1)) |
199 | 9, 198 | eqeltrrd 2840 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(log‘𝑥)) ∈
𝑂(1)) |
200 | 1, 199 | mto 196 |
1
⊢ ¬
𝜑 |