MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fno1 Structured version   Visualization version   GIF version

Theorem dchrisum0fno1 27438
Description: The sum Σ𝑘𝑥, 𝐹(𝑥) / √𝑘 is divergent (i.e. not eventually bounded). Equation 9.4.30 of [Shapiro], p. 383. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0fno1.a (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ 𝑂(1))
Assertion
Ref Expression
dchrisum0fno1 ¬ 𝜑
Distinct variable groups:   𝑥,𝑘, 1   𝑘,𝐹,𝑥   𝑘,𝑏,𝑞,𝑣,𝑥   𝑘,𝑁,𝑞,𝑥   𝜑,𝑘,𝑥   𝑘,𝑍,𝑥   𝐷,𝑘,𝑥   𝐿,𝑏,𝑘,𝑣,𝑥   𝑋,𝑏,𝑘,𝑣,𝑥
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑥,𝑣,𝑘,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0fno1
Dummy variables 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logno1 26561 . 2 ¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)
2 relogcl 26500 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
32adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
43recnd 11162 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
5 2cnd 12224 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
6 2ne0 12250 . . . . . 6 2 ≠ 0
76a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
84, 5, 7divcan2d 11920 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (2 · ((log‘𝑥) / 2)) = (log‘𝑥))
98mpteq2dva 5188 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · ((log‘𝑥) / 2))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
103rehalfcld 12389 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / 2) ∈ ℝ)
1110recnd 11162 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / 2) ∈ ℂ)
12 rpssre 12919 . . . . . 6 + ⊆ ℝ
13 2cn 12221 . . . . . 6 2 ∈ ℂ
14 o1const 15545 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
1512, 13, 14mp2an 692 . . . . 5 (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1)
1615a1i 11 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
17 1red 11135 . . . . 5 (𝜑 → 1 ∈ ℝ)
18 dchrisum0fno1.a . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ 𝑂(1))
19 sumex 15613 . . . . . 6 Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ V
2019a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ V)
2110adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ∈ ℝ)
222ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
23 log1 26510 . . . . . . . . 9 (log‘1) = 0
24 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
25 1rp 12915 . . . . . . . . . . 11 1 ∈ ℝ+
26 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
27 logleb 26528 . . . . . . . . . . 11 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
2825, 26, 27sylancr 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
2924, 28mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
3023, 29eqbrtrrid 5131 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
31 2re 12220 . . . . . . . . 9 2 ∈ ℝ
3231a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ∈ ℝ)
33 2pos 12249 . . . . . . . . 9 0 < 2
3433a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 < 2)
35 divge0 12012 . . . . . . . 8 ((((log‘𝑥) ∈ ℝ ∧ 0 ≤ (log‘𝑥)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((log‘𝑥) / 2))
3622, 30, 32, 34, 35syl22anc 838 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((log‘𝑥) / 2))
3721, 36absidd 15348 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘𝑥) / 2)) = ((log‘𝑥) / 2))
38 fzfid 13898 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
39 rpvmasum.z . . . . . . . . . . . 12 𝑍 = (ℤ/nℤ‘𝑁)
40 rpvmasum.l . . . . . . . . . . . 12 𝐿 = (ℤRHom‘𝑍)
41 rpvmasum.a . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
42 rpvmasum2.g . . . . . . . . . . . 12 𝐺 = (DChr‘𝑁)
43 rpvmasum2.d . . . . . . . . . . . 12 𝐷 = (Base‘𝐺)
44 rpvmasum2.1 . . . . . . . . . . . 12 1 = (0g𝐺)
45 dchrisum0f.f . . . . . . . . . . . 12 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
46 dchrisum0f.x . . . . . . . . . . . 12 (𝜑𝑋𝐷)
47 dchrisum0flb.r . . . . . . . . . . . 12 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
4839, 40, 41, 42, 43, 44, 45, 46, 47dchrisum0ff 27434 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ)
4948adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐹:ℕ⟶ℝ)
50 elfznn 13474 . . . . . . . . . 10 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
51 ffvelcdm 7019 . . . . . . . . . 10 ((𝐹:ℕ⟶ℝ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
5249, 50, 51syl2an 596 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (𝐹𝑘) ∈ ℝ)
5350adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
5453nnrpd 12953 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℝ+)
5554rpsqrtcld 15337 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℝ+)
5652, 55rerpdivcld 12986 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((𝐹𝑘) / (√‘𝑘)) ∈ ℝ)
5738, 56fsumrecl 15659 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ ℝ)
5857recnd 11162 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ ℂ)
5958abscld 15364 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ ℝ)
60 fzfid 13898 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘(√‘𝑥))) ∈ Fin)
61 elfznn 13474 . . . . . . . . . . 11 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → 𝑖 ∈ ℕ)
6261adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑖 ∈ ℕ)
6362nnrecred 12197 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (1 / 𝑖) ∈ ℝ)
6460, 63fsumrecl 15659 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖) ∈ ℝ)
65 logsqrt 26629 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘(√‘𝑥)) = ((log‘𝑥) / 2))
6665ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(√‘𝑥)) = ((log‘𝑥) / 2))
67 rpsqrtcl 15189 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
6867ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (√‘𝑥) ∈ ℝ+)
69 harmoniclbnd 26935 . . . . . . . . . 10 ((√‘𝑥) ∈ ℝ+ → (log‘(√‘𝑥)) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
7068, 69syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(√‘𝑥)) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
7166, 70eqbrtrrd 5119 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
72 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) = (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))
73 ovex 7386 . . . . . . . . . . . . . . . . 17 (𝑚↑2) ∈ V
7472, 73elrnmpti 5908 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ↔ ∃𝑚 ∈ (1...(⌊‘(√‘𝑥)))𝑘 = (𝑚↑2))
75 elfznn 13474 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → 𝑚 ∈ ℕ)
7675adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ∈ ℕ)
7776nnrpd 12953 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ∈ ℝ+)
7877rprege0d 12962 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
79 sqrtsq 15194 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) → (√‘(𝑚↑2)) = 𝑚)
8078, 79syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑚↑2)) = 𝑚)
8180, 76eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑚↑2)) ∈ ℕ)
82 fveq2 6826 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚↑2) → (√‘𝑘) = (√‘(𝑚↑2)))
8382eleq1d 2813 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚↑2) → ((√‘𝑘) ∈ ℕ ↔ (√‘(𝑚↑2)) ∈ ℕ))
8481, 83syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑘 = (𝑚↑2) → (√‘𝑘) ∈ ℕ))
8584rexlimdva 3130 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∃𝑚 ∈ (1...(⌊‘(√‘𝑥)))𝑘 = (𝑚↑2) → (√‘𝑘) ∈ ℕ))
8674, 85biimtrid 242 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) → (√‘𝑘) ∈ ℕ))
8786imp 406 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (√‘𝑘) ∈ ℕ)
8887iftrued 4486 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → if((√‘𝑘) ∈ ℕ, 1, 0) = 1)
8988oveq1d 7368 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = (1 / (√‘𝑘)))
9089sumeq2dv 15627 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(1 / (√‘𝑘)))
91 fveq2 6826 . . . . . . . . . . . . 13 (𝑘 = (𝑖↑2) → (√‘𝑘) = (√‘(𝑖↑2)))
9291oveq2d 7369 . . . . . . . . . . . 12 (𝑘 = (𝑖↑2) → (1 / (√‘𝑘)) = (1 / (√‘(𝑖↑2))))
9376nnsqcld 14169 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ∈ ℕ)
9468rpred 12955 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (√‘𝑥) ∈ ℝ)
95 fznnfl 13784 . . . . . . . . . . . . . . . . . . . 20 ((√‘𝑥) ∈ ℝ → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (√‘𝑥))))
9694, 95syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (√‘𝑥))))
9796simplbda 499 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ≤ (√‘𝑥))
9868adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘𝑥) ∈ ℝ+)
9998rprege0d 12962 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((√‘𝑥) ∈ ℝ ∧ 0 ≤ (√‘𝑥)))
100 le2sq 14059 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ ((√‘𝑥) ∈ ℝ ∧ 0 ≤ (√‘𝑥))) → (𝑚 ≤ (√‘𝑥) ↔ (𝑚↑2) ≤ ((√‘𝑥)↑2)))
10178, 99, 100syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚 ≤ (√‘𝑥) ↔ (𝑚↑2) ≤ ((√‘𝑥)↑2)))
10297, 101mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ≤ ((√‘𝑥)↑2))
10326rpred 12955 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
104103adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑥 ∈ ℝ)
105104recnd 11162 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑥 ∈ ℂ)
106105sqsqrtd 15367 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((√‘𝑥)↑2) = 𝑥)
107102, 106breqtrd 5121 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ≤ 𝑥)
108 fznnfl 13784 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → ((𝑚↑2) ∈ (1...(⌊‘𝑥)) ↔ ((𝑚↑2) ∈ ℕ ∧ (𝑚↑2) ≤ 𝑥)))
109104, 108syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) ∈ (1...(⌊‘𝑥)) ↔ ((𝑚↑2) ∈ ℕ ∧ (𝑚↑2) ≤ 𝑥)))
11093, 107, 109mpbir2and 713 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ∈ (1...(⌊‘𝑥)))
111110ex 412 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → (𝑚↑2) ∈ (1...(⌊‘𝑥))))
11275nnrpd 12953 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → 𝑚 ∈ ℝ+)
113112rprege0d 12962 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
11461nnrpd 12953 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → 𝑖 ∈ ℝ+)
115114rprege0d 12962 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖))
116 sq11 14056 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖)) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖))
117113, 115, 116syl2an 596 . . . . . . . . . . . . . . 15 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖))
118117a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖)))
119111, 118dom2lem 8924 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)))
120 f1f1orn 6779 . . . . . . . . . . . . 13 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1-onto→ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
121119, 120syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1-onto→ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
122 oveq1 7360 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚↑2) = (𝑖↑2))
123122, 72, 73fvmpt3i 6939 . . . . . . . . . . . . 13 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))‘𝑖) = (𝑖↑2))
124123adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))‘𝑖) = (𝑖↑2))
125 f1f 6724 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))⟶(1...(⌊‘𝑥)))
126 frn 6663 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))⟶(1...(⌊‘𝑥)) → ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ⊆ (1...(⌊‘𝑥)))
127119, 125, 1263syl 18 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ⊆ (1...(⌊‘𝑥)))
128127sselda 3937 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → 𝑘 ∈ (1...(⌊‘𝑥)))
129 1re 11134 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
130 0re 11136 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
131129, 130ifcli 4526 . . . . . . . . . . . . . . . 16 if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ
132 rerpdivcl 12943 . . . . . . . . . . . . . . . 16 ((if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ ∧ (√‘𝑘) ∈ ℝ+) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℝ)
133131, 55, 132sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℝ)
134133recnd 11162 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℂ)
135128, 134syldan 591 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℂ)
13689, 135eqeltrrd 2829 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (1 / (√‘𝑘)) ∈ ℂ)
13792, 60, 121, 124, 136fsumf1o 15648 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(1 / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))))
13890, 137eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))))
139 eldif 3915 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) ↔ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ ¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))))
14050ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℕ)
141140nncnd 12162 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℂ)
142141sqsqrtd 15367 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) = 𝑘)
143 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ∈ ℕ)
144 fznnfl 13784 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ → (𝑘 ∈ (1...(⌊‘𝑥)) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑥)))
145103, 144syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑘 ∈ (1...(⌊‘𝑥)) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑥)))
146145simplbda 499 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘𝑥)
147146adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘𝑥)
148140nnrpd 12953 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℝ+)
149148rprege0d 12962 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
15026adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑥 ∈ ℝ+)
151150rprege0d 12962 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
152 sqrtle 15185 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑘𝑥 ↔ (√‘𝑘) ≤ (√‘𝑥)))
153149, 151, 152syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑘𝑥 ↔ (√‘𝑘) ≤ (√‘𝑥)))
154147, 153mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ≤ (√‘𝑥))
15568adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑥) ∈ ℝ+)
156155rpred 12955 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑥) ∈ ℝ)
157 fznnfl 13784 . . . . . . . . . . . . . . . . . . . . . 22 ((√‘𝑥) ∈ ℝ → ((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ↔ ((√‘𝑘) ∈ ℕ ∧ (√‘𝑘) ≤ (√‘𝑥))))
158156, 157syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ↔ ((√‘𝑘) ∈ ℕ ∧ (√‘𝑘) ≤ (√‘𝑥))))
159143, 154, 158mpbir2and 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))))
160142, 140eqeltrd 2828 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) ∈ ℕ)
161 oveq1 7360 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = (√‘𝑘) → (𝑚↑2) = ((√‘𝑘)↑2))
16272, 161elrnmpt1s 5905 . . . . . . . . . . . . . . . . . . . 20 (((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ∧ ((√‘𝑘)↑2) ∈ ℕ) → ((√‘𝑘)↑2) ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
163159, 160, 162syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
164142, 163eqeltrrd 2829 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
165164expr 456 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((√‘𝑘) ∈ ℕ → 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))))
166165con3d 152 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) → ¬ (√‘𝑘) ∈ ℕ))
167166impr 454 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ ¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ¬ (√‘𝑘) ∈ ℕ)
168139, 167sylan2b 594 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ¬ (√‘𝑘) ∈ ℕ)
169168iffalsed 4489 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → if((√‘𝑘) ∈ ℕ, 1, 0) = 0)
170169oveq1d 7368 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = (0 / (√‘𝑘)))
171 eldifi 4084 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → 𝑘 ∈ (1...(⌊‘𝑥)))
172171, 55sylan2 593 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (√‘𝑘) ∈ ℝ+)
173172rpcnne0d 12964 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ((√‘𝑘) ∈ ℂ ∧ (√‘𝑘) ≠ 0))
174 div0 11830 . . . . . . . . . . . . 13 (((√‘𝑘) ∈ ℂ ∧ (√‘𝑘) ≠ 0) → (0 / (√‘𝑘)) = 0)
175173, 174syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (0 / (√‘𝑘)) = 0)
176170, 175eqtrd 2764 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = 0)
177127, 135, 176, 38fsumss 15650 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)))
17862nnrpd 12953 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑖 ∈ ℝ+)
179178rprege0d 12962 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖))
180 sqrtsq 15194 . . . . . . . . . . . . 13 ((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) → (√‘(𝑖↑2)) = 𝑖)
181179, 180syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑖↑2)) = 𝑖)
182181oveq2d 7369 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (1 / (√‘(𝑖↑2))) = (1 / 𝑖))
183182sumeq2dv 15627 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
184138, 177, 1833eqtr3d 2772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
185131a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ)
18641ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈ ℕ)
18746ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
18847ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑋:(Base‘𝑍)⟶ℝ)
18939, 40, 186, 42, 43, 44, 45, 187, 188, 53dchrisum0flb 27437 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → if((√‘𝑘) ∈ ℕ, 1, 0) ≤ (𝐹𝑘))
190185, 52, 55, 189lediv1dd 13013 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ≤ ((𝐹𝑘) / (√‘𝑘)))
19138, 133, 56, 190fsumle 15724 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
192184, 191eqbrtrrd 5119 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
19321, 64, 57, 71, 192letrd 11291 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
19457leabsd 15340 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19521, 57, 59, 193, 194letrd 11291 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19637, 195eqbrtrd 5117 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘𝑥) / 2)) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19717, 18, 20, 11, 196o1le 15578 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 2)) ∈ 𝑂(1))
1985, 11, 16, 197o1mul2 15550 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · ((log‘𝑥) / 2))) ∈ 𝑂(1))
1999, 198eqeltrrd 2829 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1))
2001, 199mto 197 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3396  Vcvv 3438  cdif 3902  wss 3905  ifcif 4478   class class class wbr 5095  cmpt 5176  ran crn 5624  wf 6482  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   · cmul 11033   < clt 11168  cle 11169   / cdiv 11795  cn 12146  2c2 12201  +crp 12911  ...cfz 13428  cfl 13712  cexp 13986  csqrt 15158  abscabs 15159  𝑂(1)co1 15411  Σcsu 15611  cdvds 16181  Basecbs 17138  0gc0g 17361  ℤRHomczrh 21424  ℤ/nczn 21427  logclog 26479  DChrcdchr 27159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-o1 15415  df-lo1 15416  df-sum 15612  df-ef 15992  df-e 15993  df-sin 15994  df-cos 15995  df-tan 15996  df-pi 15997  df-dvds 16182  df-gcd 16424  df-prm 16601  df-numer 16664  df-denom 16665  df-pc 16767  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-qus 17431  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-nsg 19021  df-eqg 19022  df-ghm 19110  df-cntz 19214  df-od 19425  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-2idl 21175  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-zring 21372  df-zrh 21428  df-zn 21431  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-ulm 26302  df-log 26481  df-cxp 26482  df-atan 26793  df-em 26919  df-dchr 27160
This theorem is referenced by:  dchrisum0  27447
  Copyright terms: Public domain W3C validator