MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fno1 Structured version   Visualization version   GIF version

Theorem dchrisum0fno1 27459
Description: The sum Σ𝑘𝑥, 𝐹(𝑥) / √𝑘 is divergent (i.e. not eventually bounded). Equation 9.4.30 of [Shapiro], p. 383. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0fno1.a (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ 𝑂(1))
Assertion
Ref Expression
dchrisum0fno1 ¬ 𝜑
Distinct variable groups:   𝑥,𝑘, 1   𝑘,𝐹,𝑥   𝑘,𝑏,𝑞,𝑣,𝑥   𝑘,𝑁,𝑞,𝑥   𝜑,𝑘,𝑥   𝑘,𝑍,𝑥   𝐷,𝑘,𝑥   𝐿,𝑏,𝑘,𝑣,𝑥   𝑋,𝑏,𝑘,𝑣,𝑥
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑥,𝑣,𝑘,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0fno1
Dummy variables 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logno1 26582 . 2 ¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)
2 relogcl 26521 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
32adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
43recnd 11150 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
5 2cnd 12213 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
6 2ne0 12239 . . . . . 6 2 ≠ 0
76a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
84, 5, 7divcan2d 11909 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (2 · ((log‘𝑥) / 2)) = (log‘𝑥))
98mpteq2dva 5188 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · ((log‘𝑥) / 2))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
103rehalfcld 12378 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / 2) ∈ ℝ)
1110recnd 11150 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / 2) ∈ ℂ)
12 rpssre 12908 . . . . . 6 + ⊆ ℝ
13 2cn 12210 . . . . . 6 2 ∈ ℂ
14 o1const 15537 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
1512, 13, 14mp2an 692 . . . . 5 (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1)
1615a1i 11 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
17 1red 11123 . . . . 5 (𝜑 → 1 ∈ ℝ)
18 dchrisum0fno1.a . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ 𝑂(1))
19 sumex 15605 . . . . . 6 Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ V
2019a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ V)
2110adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ∈ ℝ)
222ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
23 log1 26531 . . . . . . . . 9 (log‘1) = 0
24 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
25 1rp 12904 . . . . . . . . . . 11 1 ∈ ℝ+
26 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
27 logleb 26549 . . . . . . . . . . 11 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
2825, 26, 27sylancr 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
2924, 28mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
3023, 29eqbrtrrid 5131 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
31 2re 12209 . . . . . . . . 9 2 ∈ ℝ
3231a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ∈ ℝ)
33 2pos 12238 . . . . . . . . 9 0 < 2
3433a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 < 2)
35 divge0 12001 . . . . . . . 8 ((((log‘𝑥) ∈ ℝ ∧ 0 ≤ (log‘𝑥)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((log‘𝑥) / 2))
3622, 30, 32, 34, 35syl22anc 838 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((log‘𝑥) / 2))
3721, 36absidd 15340 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘𝑥) / 2)) = ((log‘𝑥) / 2))
38 fzfid 13890 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
39 rpvmasum.z . . . . . . . . . . . 12 𝑍 = (ℤ/nℤ‘𝑁)
40 rpvmasum.l . . . . . . . . . . . 12 𝐿 = (ℤRHom‘𝑍)
41 rpvmasum.a . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
42 rpvmasum2.g . . . . . . . . . . . 12 𝐺 = (DChr‘𝑁)
43 rpvmasum2.d . . . . . . . . . . . 12 𝐷 = (Base‘𝐺)
44 rpvmasum2.1 . . . . . . . . . . . 12 1 = (0g𝐺)
45 dchrisum0f.f . . . . . . . . . . . 12 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
46 dchrisum0f.x . . . . . . . . . . . 12 (𝜑𝑋𝐷)
47 dchrisum0flb.r . . . . . . . . . . . 12 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
4839, 40, 41, 42, 43, 44, 45, 46, 47dchrisum0ff 27455 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ)
4948adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐹:ℕ⟶ℝ)
50 elfznn 13463 . . . . . . . . . 10 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
51 ffvelcdm 7023 . . . . . . . . . 10 ((𝐹:ℕ⟶ℝ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
5249, 50, 51syl2an 596 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (𝐹𝑘) ∈ ℝ)
5350adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
5453nnrpd 12942 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℝ+)
5554rpsqrtcld 15329 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℝ+)
5652, 55rerpdivcld 12975 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((𝐹𝑘) / (√‘𝑘)) ∈ ℝ)
5738, 56fsumrecl 15651 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ ℝ)
5857recnd 11150 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ ℂ)
5958abscld 15356 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ ℝ)
60 fzfid 13890 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘(√‘𝑥))) ∈ Fin)
61 elfznn 13463 . . . . . . . . . . 11 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → 𝑖 ∈ ℕ)
6261adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑖 ∈ ℕ)
6362nnrecred 12186 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (1 / 𝑖) ∈ ℝ)
6460, 63fsumrecl 15651 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖) ∈ ℝ)
65 logsqrt 26650 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘(√‘𝑥)) = ((log‘𝑥) / 2))
6665ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(√‘𝑥)) = ((log‘𝑥) / 2))
67 rpsqrtcl 15181 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
6867ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (√‘𝑥) ∈ ℝ+)
69 harmoniclbnd 26956 . . . . . . . . . 10 ((√‘𝑥) ∈ ℝ+ → (log‘(√‘𝑥)) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
7068, 69syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(√‘𝑥)) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
7166, 70eqbrtrrd 5119 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
72 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) = (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))
73 ovex 7388 . . . . . . . . . . . . . . . . 17 (𝑚↑2) ∈ V
7472, 73elrnmpti 5909 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ↔ ∃𝑚 ∈ (1...(⌊‘(√‘𝑥)))𝑘 = (𝑚↑2))
75 elfznn 13463 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → 𝑚 ∈ ℕ)
7675adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ∈ ℕ)
7776nnrpd 12942 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ∈ ℝ+)
7877rprege0d 12951 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
79 sqrtsq 15186 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) → (√‘(𝑚↑2)) = 𝑚)
8078, 79syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑚↑2)) = 𝑚)
8180, 76eqeltrd 2833 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑚↑2)) ∈ ℕ)
82 fveq2 6831 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚↑2) → (√‘𝑘) = (√‘(𝑚↑2)))
8382eleq1d 2818 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚↑2) → ((√‘𝑘) ∈ ℕ ↔ (√‘(𝑚↑2)) ∈ ℕ))
8481, 83syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑘 = (𝑚↑2) → (√‘𝑘) ∈ ℕ))
8584rexlimdva 3135 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∃𝑚 ∈ (1...(⌊‘(√‘𝑥)))𝑘 = (𝑚↑2) → (√‘𝑘) ∈ ℕ))
8674, 85biimtrid 242 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) → (√‘𝑘) ∈ ℕ))
8786imp 406 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (√‘𝑘) ∈ ℕ)
8887iftrued 4484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → if((√‘𝑘) ∈ ℕ, 1, 0) = 1)
8988oveq1d 7370 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = (1 / (√‘𝑘)))
9089sumeq2dv 15619 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(1 / (√‘𝑘)))
91 fveq2 6831 . . . . . . . . . . . . 13 (𝑘 = (𝑖↑2) → (√‘𝑘) = (√‘(𝑖↑2)))
9291oveq2d 7371 . . . . . . . . . . . 12 (𝑘 = (𝑖↑2) → (1 / (√‘𝑘)) = (1 / (√‘(𝑖↑2))))
9376nnsqcld 14161 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ∈ ℕ)
9468rpred 12944 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (√‘𝑥) ∈ ℝ)
95 fznnfl 13776 . . . . . . . . . . . . . . . . . . . 20 ((√‘𝑥) ∈ ℝ → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (√‘𝑥))))
9694, 95syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (√‘𝑥))))
9796simplbda 499 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ≤ (√‘𝑥))
9868adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘𝑥) ∈ ℝ+)
9998rprege0d 12951 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((√‘𝑥) ∈ ℝ ∧ 0 ≤ (√‘𝑥)))
100 le2sq 14051 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ ((√‘𝑥) ∈ ℝ ∧ 0 ≤ (√‘𝑥))) → (𝑚 ≤ (√‘𝑥) ↔ (𝑚↑2) ≤ ((√‘𝑥)↑2)))
10178, 99, 100syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚 ≤ (√‘𝑥) ↔ (𝑚↑2) ≤ ((√‘𝑥)↑2)))
10297, 101mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ≤ ((√‘𝑥)↑2))
10326rpred 12944 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
104103adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑥 ∈ ℝ)
105104recnd 11150 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑥 ∈ ℂ)
106105sqsqrtd 15359 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((√‘𝑥)↑2) = 𝑥)
107102, 106breqtrd 5121 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ≤ 𝑥)
108 fznnfl 13776 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → ((𝑚↑2) ∈ (1...(⌊‘𝑥)) ↔ ((𝑚↑2) ∈ ℕ ∧ (𝑚↑2) ≤ 𝑥)))
109104, 108syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) ∈ (1...(⌊‘𝑥)) ↔ ((𝑚↑2) ∈ ℕ ∧ (𝑚↑2) ≤ 𝑥)))
11093, 107, 109mpbir2and 713 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ∈ (1...(⌊‘𝑥)))
111110ex 412 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → (𝑚↑2) ∈ (1...(⌊‘𝑥))))
11275nnrpd 12942 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → 𝑚 ∈ ℝ+)
113112rprege0d 12951 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
11461nnrpd 12942 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → 𝑖 ∈ ℝ+)
115114rprege0d 12951 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖))
116 sq11 14048 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖)) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖))
117113, 115, 116syl2an 596 . . . . . . . . . . . . . . 15 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖))
118117a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖)))
119111, 118dom2lem 8924 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)))
120 f1f1orn 6782 . . . . . . . . . . . . 13 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1-onto→ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
121119, 120syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1-onto→ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
122 oveq1 7362 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚↑2) = (𝑖↑2))
123122, 72, 73fvmpt3i 6943 . . . . . . . . . . . . 13 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))‘𝑖) = (𝑖↑2))
124123adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))‘𝑖) = (𝑖↑2))
125 f1f 6727 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))⟶(1...(⌊‘𝑥)))
126 frn 6666 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))⟶(1...(⌊‘𝑥)) → ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ⊆ (1...(⌊‘𝑥)))
127119, 125, 1263syl 18 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ⊆ (1...(⌊‘𝑥)))
128127sselda 3931 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → 𝑘 ∈ (1...(⌊‘𝑥)))
129 1re 11122 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
130 0re 11124 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
131129, 130ifcli 4524 . . . . . . . . . . . . . . . 16 if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ
132 rerpdivcl 12932 . . . . . . . . . . . . . . . 16 ((if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ ∧ (√‘𝑘) ∈ ℝ+) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℝ)
133131, 55, 132sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℝ)
134133recnd 11150 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℂ)
135128, 134syldan 591 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℂ)
13689, 135eqeltrrd 2834 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (1 / (√‘𝑘)) ∈ ℂ)
13792, 60, 121, 124, 136fsumf1o 15640 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(1 / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))))
13890, 137eqtrd 2768 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))))
139 eldif 3909 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) ↔ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ ¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))))
14050ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℕ)
141140nncnd 12151 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℂ)
142141sqsqrtd 15359 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) = 𝑘)
143 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ∈ ℕ)
144 fznnfl 13776 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ → (𝑘 ∈ (1...(⌊‘𝑥)) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑥)))
145103, 144syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑘 ∈ (1...(⌊‘𝑥)) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑥)))
146145simplbda 499 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘𝑥)
147146adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘𝑥)
148140nnrpd 12942 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℝ+)
149148rprege0d 12951 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
15026adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑥 ∈ ℝ+)
151150rprege0d 12951 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
152 sqrtle 15177 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑘𝑥 ↔ (√‘𝑘) ≤ (√‘𝑥)))
153149, 151, 152syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑘𝑥 ↔ (√‘𝑘) ≤ (√‘𝑥)))
154147, 153mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ≤ (√‘𝑥))
15568adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑥) ∈ ℝ+)
156155rpred 12944 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑥) ∈ ℝ)
157 fznnfl 13776 . . . . . . . . . . . . . . . . . . . . . 22 ((√‘𝑥) ∈ ℝ → ((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ↔ ((√‘𝑘) ∈ ℕ ∧ (√‘𝑘) ≤ (√‘𝑥))))
158156, 157syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ↔ ((√‘𝑘) ∈ ℕ ∧ (√‘𝑘) ≤ (√‘𝑥))))
159143, 154, 158mpbir2and 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))))
160142, 140eqeltrd 2833 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) ∈ ℕ)
161 oveq1 7362 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = (√‘𝑘) → (𝑚↑2) = ((√‘𝑘)↑2))
16272, 161elrnmpt1s 5906 . . . . . . . . . . . . . . . . . . . 20 (((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ∧ ((√‘𝑘)↑2) ∈ ℕ) → ((√‘𝑘)↑2) ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
163159, 160, 162syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
164142, 163eqeltrrd 2834 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
165164expr 456 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((√‘𝑘) ∈ ℕ → 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))))
166165con3d 152 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) → ¬ (√‘𝑘) ∈ ℕ))
167166impr 454 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ ¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ¬ (√‘𝑘) ∈ ℕ)
168139, 167sylan2b 594 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ¬ (√‘𝑘) ∈ ℕ)
169168iffalsed 4487 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → if((√‘𝑘) ∈ ℕ, 1, 0) = 0)
170169oveq1d 7370 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = (0 / (√‘𝑘)))
171 eldifi 4082 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → 𝑘 ∈ (1...(⌊‘𝑥)))
172171, 55sylan2 593 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (√‘𝑘) ∈ ℝ+)
173172rpcnne0d 12953 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ((√‘𝑘) ∈ ℂ ∧ (√‘𝑘) ≠ 0))
174 div0 11819 . . . . . . . . . . . . 13 (((√‘𝑘) ∈ ℂ ∧ (√‘𝑘) ≠ 0) → (0 / (√‘𝑘)) = 0)
175173, 174syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (0 / (√‘𝑘)) = 0)
176170, 175eqtrd 2768 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = 0)
177127, 135, 176, 38fsumss 15642 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)))
17862nnrpd 12942 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑖 ∈ ℝ+)
179178rprege0d 12951 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖))
180 sqrtsq 15186 . . . . . . . . . . . . 13 ((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) → (√‘(𝑖↑2)) = 𝑖)
181179, 180syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑖↑2)) = 𝑖)
182181oveq2d 7371 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (1 / (√‘(𝑖↑2))) = (1 / 𝑖))
183182sumeq2dv 15619 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
184138, 177, 1833eqtr3d 2776 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
185131a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ)
18641ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈ ℕ)
18746ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
18847ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑋:(Base‘𝑍)⟶ℝ)
18939, 40, 186, 42, 43, 44, 45, 187, 188, 53dchrisum0flb 27458 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → if((√‘𝑘) ∈ ℕ, 1, 0) ≤ (𝐹𝑘))
190185, 52, 55, 189lediv1dd 13002 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ≤ ((𝐹𝑘) / (√‘𝑘)))
19138, 133, 56, 190fsumle 15716 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
192184, 191eqbrtrrd 5119 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
19321, 64, 57, 71, 192letrd 11280 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
19457leabsd 15332 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19521, 57, 59, 193, 194letrd 11280 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19637, 195eqbrtrd 5117 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘𝑥) / 2)) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19717, 18, 20, 11, 196o1le 15570 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 2)) ∈ 𝑂(1))
1985, 11, 16, 197o1mul2 15542 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · ((log‘𝑥) / 2))) ∈ 𝑂(1))
1999, 198eqeltrrd 2834 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1))
2001, 199mto 197 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2930  wrex 3058  {crab 3397  Vcvv 3438  cdif 3896  wss 3899  ifcif 4476   class class class wbr 5095  cmpt 5176  ran crn 5622  wf 6485  1-1wf1 6486  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  cc 11014  cr 11015  0cc0 11016  1c1 11017   · cmul 11021   < clt 11156  cle 11157   / cdiv 11784  cn 12135  2c2 12190  +crp 12900  ...cfz 13417  cfl 13704  cexp 13978  csqrt 15150  abscabs 15151  𝑂(1)co1 15403  Σcsu 15603  cdvds 16173  Basecbs 17130  0gc0g 17353  ℤRHomczrh 21446  ℤ/nczn 21449  logclog 26500  DChrcdchr 27180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095  ax-mulf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-ec 8633  df-qs 8637  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-acn 9845  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-xnn0 12465  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-shft 14984  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-o1 15407  df-lo1 15408  df-sum 15604  df-ef 15984  df-e 15985  df-sin 15986  df-cos 15987  df-tan 15988  df-pi 15989  df-dvds 16174  df-gcd 16416  df-prm 16593  df-numer 16656  df-denom 16657  df-pc 16759  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-qus 17423  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18991  df-subg 19046  df-nsg 19047  df-eqg 19048  df-ghm 19135  df-cntz 19239  df-od 19450  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-cring 20164  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-rhm 20400  df-subrng 20471  df-subrg 20495  df-drng 20656  df-lmod 20805  df-lss 20875  df-lsp 20915  df-sra 21117  df-rgmod 21118  df-lidl 21155  df-rsp 21156  df-2idl 21197  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-zring 21394  df-zrh 21450  df-zn 21453  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-cmp 23312  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-limc 25804  df-dv 25805  df-ulm 26323  df-log 26502  df-cxp 26503  df-atan 26814  df-em 26940  df-dchr 27181
This theorem is referenced by:  dchrisum0  27468
  Copyright terms: Public domain W3C validator