MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fno1 Structured version   Visualization version   GIF version

Theorem dchrisum0fno1 27442
Description: The sum Σ𝑘𝑥, 𝐹(𝑥) / √𝑘 is divergent (i.e. not eventually bounded). Equation 9.4.30 of [Shapiro], p. 383. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0fno1.a (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ 𝑂(1))
Assertion
Ref Expression
dchrisum0fno1 ¬ 𝜑
Distinct variable groups:   𝑥,𝑘, 1   𝑘,𝐹,𝑥   𝑘,𝑏,𝑞,𝑣,𝑥   𝑘,𝑁,𝑞,𝑥   𝜑,𝑘,𝑥   𝑘,𝑍,𝑥   𝐷,𝑘,𝑥   𝐿,𝑏,𝑘,𝑣,𝑥   𝑋,𝑏,𝑘,𝑣,𝑥
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑥,𝑣,𝑘,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0fno1
Dummy variables 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logno1 26565 . 2 ¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)
2 relogcl 26504 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
32adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
43recnd 11132 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
5 2cnd 12195 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
6 2ne0 12221 . . . . . 6 2 ≠ 0
76a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
84, 5, 7divcan2d 11891 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (2 · ((log‘𝑥) / 2)) = (log‘𝑥))
98mpteq2dva 5182 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · ((log‘𝑥) / 2))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
103rehalfcld 12360 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / 2) ∈ ℝ)
1110recnd 11132 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / 2) ∈ ℂ)
12 rpssre 12890 . . . . . 6 + ⊆ ℝ
13 2cn 12192 . . . . . 6 2 ∈ ℂ
14 o1const 15519 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
1512, 13, 14mp2an 692 . . . . 5 (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1)
1615a1i 11 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
17 1red 11105 . . . . 5 (𝜑 → 1 ∈ ℝ)
18 dchrisum0fno1.a . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ 𝑂(1))
19 sumex 15587 . . . . . 6 Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ V
2019a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ V)
2110adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ∈ ℝ)
222ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
23 log1 26514 . . . . . . . . 9 (log‘1) = 0
24 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
25 1rp 12886 . . . . . . . . . . 11 1 ∈ ℝ+
26 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
27 logleb 26532 . . . . . . . . . . 11 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
2825, 26, 27sylancr 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
2924, 28mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
3023, 29eqbrtrrid 5125 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
31 2re 12191 . . . . . . . . 9 2 ∈ ℝ
3231a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ∈ ℝ)
33 2pos 12220 . . . . . . . . 9 0 < 2
3433a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 < 2)
35 divge0 11983 . . . . . . . 8 ((((log‘𝑥) ∈ ℝ ∧ 0 ≤ (log‘𝑥)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((log‘𝑥) / 2))
3622, 30, 32, 34, 35syl22anc 838 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((log‘𝑥) / 2))
3721, 36absidd 15322 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘𝑥) / 2)) = ((log‘𝑥) / 2))
38 fzfid 13872 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
39 rpvmasum.z . . . . . . . . . . . 12 𝑍 = (ℤ/nℤ‘𝑁)
40 rpvmasum.l . . . . . . . . . . . 12 𝐿 = (ℤRHom‘𝑍)
41 rpvmasum.a . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
42 rpvmasum2.g . . . . . . . . . . . 12 𝐺 = (DChr‘𝑁)
43 rpvmasum2.d . . . . . . . . . . . 12 𝐷 = (Base‘𝐺)
44 rpvmasum2.1 . . . . . . . . . . . 12 1 = (0g𝐺)
45 dchrisum0f.f . . . . . . . . . . . 12 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
46 dchrisum0f.x . . . . . . . . . . . 12 (𝜑𝑋𝐷)
47 dchrisum0flb.r . . . . . . . . . . . 12 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
4839, 40, 41, 42, 43, 44, 45, 46, 47dchrisum0ff 27438 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ)
4948adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐹:ℕ⟶ℝ)
50 elfznn 13445 . . . . . . . . . 10 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
51 ffvelcdm 7009 . . . . . . . . . 10 ((𝐹:ℕ⟶ℝ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
5249, 50, 51syl2an 596 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (𝐹𝑘) ∈ ℝ)
5350adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
5453nnrpd 12924 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℝ+)
5554rpsqrtcld 15311 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℝ+)
5652, 55rerpdivcld 12957 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((𝐹𝑘) / (√‘𝑘)) ∈ ℝ)
5738, 56fsumrecl 15633 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ ℝ)
5857recnd 11132 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ ℂ)
5958abscld 15338 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ ℝ)
60 fzfid 13872 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘(√‘𝑥))) ∈ Fin)
61 elfznn 13445 . . . . . . . . . . 11 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → 𝑖 ∈ ℕ)
6261adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑖 ∈ ℕ)
6362nnrecred 12168 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (1 / 𝑖) ∈ ℝ)
6460, 63fsumrecl 15633 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖) ∈ ℝ)
65 logsqrt 26633 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘(√‘𝑥)) = ((log‘𝑥) / 2))
6665ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(√‘𝑥)) = ((log‘𝑥) / 2))
67 rpsqrtcl 15163 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
6867ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (√‘𝑥) ∈ ℝ+)
69 harmoniclbnd 26939 . . . . . . . . . 10 ((√‘𝑥) ∈ ℝ+ → (log‘(√‘𝑥)) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
7068, 69syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(√‘𝑥)) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
7166, 70eqbrtrrd 5113 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
72 eqid 2730 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) = (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))
73 ovex 7374 . . . . . . . . . . . . . . . . 17 (𝑚↑2) ∈ V
7472, 73elrnmpti 5899 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ↔ ∃𝑚 ∈ (1...(⌊‘(√‘𝑥)))𝑘 = (𝑚↑2))
75 elfznn 13445 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → 𝑚 ∈ ℕ)
7675adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ∈ ℕ)
7776nnrpd 12924 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ∈ ℝ+)
7877rprege0d 12933 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
79 sqrtsq 15168 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) → (√‘(𝑚↑2)) = 𝑚)
8078, 79syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑚↑2)) = 𝑚)
8180, 76eqeltrd 2829 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑚↑2)) ∈ ℕ)
82 fveq2 6817 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚↑2) → (√‘𝑘) = (√‘(𝑚↑2)))
8382eleq1d 2814 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚↑2) → ((√‘𝑘) ∈ ℕ ↔ (√‘(𝑚↑2)) ∈ ℕ))
8481, 83syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑘 = (𝑚↑2) → (√‘𝑘) ∈ ℕ))
8584rexlimdva 3131 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∃𝑚 ∈ (1...(⌊‘(√‘𝑥)))𝑘 = (𝑚↑2) → (√‘𝑘) ∈ ℕ))
8674, 85biimtrid 242 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) → (√‘𝑘) ∈ ℕ))
8786imp 406 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (√‘𝑘) ∈ ℕ)
8887iftrued 4481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → if((√‘𝑘) ∈ ℕ, 1, 0) = 1)
8988oveq1d 7356 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = (1 / (√‘𝑘)))
9089sumeq2dv 15601 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(1 / (√‘𝑘)))
91 fveq2 6817 . . . . . . . . . . . . 13 (𝑘 = (𝑖↑2) → (√‘𝑘) = (√‘(𝑖↑2)))
9291oveq2d 7357 . . . . . . . . . . . 12 (𝑘 = (𝑖↑2) → (1 / (√‘𝑘)) = (1 / (√‘(𝑖↑2))))
9376nnsqcld 14143 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ∈ ℕ)
9468rpred 12926 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (√‘𝑥) ∈ ℝ)
95 fznnfl 13758 . . . . . . . . . . . . . . . . . . . 20 ((√‘𝑥) ∈ ℝ → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (√‘𝑥))))
9694, 95syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (√‘𝑥))))
9796simplbda 499 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ≤ (√‘𝑥))
9868adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘𝑥) ∈ ℝ+)
9998rprege0d 12933 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((√‘𝑥) ∈ ℝ ∧ 0 ≤ (√‘𝑥)))
100 le2sq 14033 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ ((√‘𝑥) ∈ ℝ ∧ 0 ≤ (√‘𝑥))) → (𝑚 ≤ (√‘𝑥) ↔ (𝑚↑2) ≤ ((√‘𝑥)↑2)))
10178, 99, 100syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚 ≤ (√‘𝑥) ↔ (𝑚↑2) ≤ ((√‘𝑥)↑2)))
10297, 101mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ≤ ((√‘𝑥)↑2))
10326rpred 12926 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
104103adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑥 ∈ ℝ)
105104recnd 11132 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑥 ∈ ℂ)
106105sqsqrtd 15341 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((√‘𝑥)↑2) = 𝑥)
107102, 106breqtrd 5115 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ≤ 𝑥)
108 fznnfl 13758 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → ((𝑚↑2) ∈ (1...(⌊‘𝑥)) ↔ ((𝑚↑2) ∈ ℕ ∧ (𝑚↑2) ≤ 𝑥)))
109104, 108syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) ∈ (1...(⌊‘𝑥)) ↔ ((𝑚↑2) ∈ ℕ ∧ (𝑚↑2) ≤ 𝑥)))
11093, 107, 109mpbir2and 713 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ∈ (1...(⌊‘𝑥)))
111110ex 412 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → (𝑚↑2) ∈ (1...(⌊‘𝑥))))
11275nnrpd 12924 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → 𝑚 ∈ ℝ+)
113112rprege0d 12933 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
11461nnrpd 12924 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → 𝑖 ∈ ℝ+)
115114rprege0d 12933 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖))
116 sq11 14030 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖)) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖))
117113, 115, 116syl2an 596 . . . . . . . . . . . . . . 15 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖))
118117a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖)))
119111, 118dom2lem 8909 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)))
120 f1f1orn 6770 . . . . . . . . . . . . 13 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1-onto→ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
121119, 120syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1-onto→ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
122 oveq1 7348 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚↑2) = (𝑖↑2))
123122, 72, 73fvmpt3i 6929 . . . . . . . . . . . . 13 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))‘𝑖) = (𝑖↑2))
124123adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))‘𝑖) = (𝑖↑2))
125 f1f 6715 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))⟶(1...(⌊‘𝑥)))
126 frn 6654 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))⟶(1...(⌊‘𝑥)) → ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ⊆ (1...(⌊‘𝑥)))
127119, 125, 1263syl 18 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ⊆ (1...(⌊‘𝑥)))
128127sselda 3932 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → 𝑘 ∈ (1...(⌊‘𝑥)))
129 1re 11104 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
130 0re 11106 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
131129, 130ifcli 4521 . . . . . . . . . . . . . . . 16 if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ
132 rerpdivcl 12914 . . . . . . . . . . . . . . . 16 ((if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ ∧ (√‘𝑘) ∈ ℝ+) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℝ)
133131, 55, 132sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℝ)
134133recnd 11132 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℂ)
135128, 134syldan 591 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℂ)
13689, 135eqeltrrd 2830 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (1 / (√‘𝑘)) ∈ ℂ)
13792, 60, 121, 124, 136fsumf1o 15622 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(1 / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))))
13890, 137eqtrd 2765 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))))
139 eldif 3910 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) ↔ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ ¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))))
14050ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℕ)
141140nncnd 12133 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℂ)
142141sqsqrtd 15341 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) = 𝑘)
143 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ∈ ℕ)
144 fznnfl 13758 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ → (𝑘 ∈ (1...(⌊‘𝑥)) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑥)))
145103, 144syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑘 ∈ (1...(⌊‘𝑥)) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑥)))
146145simplbda 499 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘𝑥)
147146adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘𝑥)
148140nnrpd 12924 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℝ+)
149148rprege0d 12933 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
15026adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑥 ∈ ℝ+)
151150rprege0d 12933 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
152 sqrtle 15159 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑘𝑥 ↔ (√‘𝑘) ≤ (√‘𝑥)))
153149, 151, 152syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑘𝑥 ↔ (√‘𝑘) ≤ (√‘𝑥)))
154147, 153mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ≤ (√‘𝑥))
15568adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑥) ∈ ℝ+)
156155rpred 12926 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑥) ∈ ℝ)
157 fznnfl 13758 . . . . . . . . . . . . . . . . . . . . . 22 ((√‘𝑥) ∈ ℝ → ((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ↔ ((√‘𝑘) ∈ ℕ ∧ (√‘𝑘) ≤ (√‘𝑥))))
158156, 157syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ↔ ((√‘𝑘) ∈ ℕ ∧ (√‘𝑘) ≤ (√‘𝑥))))
159143, 154, 158mpbir2and 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))))
160142, 140eqeltrd 2829 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) ∈ ℕ)
161 oveq1 7348 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = (√‘𝑘) → (𝑚↑2) = ((√‘𝑘)↑2))
16272, 161elrnmpt1s 5896 . . . . . . . . . . . . . . . . . . . 20 (((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ∧ ((√‘𝑘)↑2) ∈ ℕ) → ((√‘𝑘)↑2) ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
163159, 160, 162syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
164142, 163eqeltrrd 2830 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
165164expr 456 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((√‘𝑘) ∈ ℕ → 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))))
166165con3d 152 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) → ¬ (√‘𝑘) ∈ ℕ))
167166impr 454 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ ¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ¬ (√‘𝑘) ∈ ℕ)
168139, 167sylan2b 594 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ¬ (√‘𝑘) ∈ ℕ)
169168iffalsed 4484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → if((√‘𝑘) ∈ ℕ, 1, 0) = 0)
170169oveq1d 7356 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = (0 / (√‘𝑘)))
171 eldifi 4079 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → 𝑘 ∈ (1...(⌊‘𝑥)))
172171, 55sylan2 593 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (√‘𝑘) ∈ ℝ+)
173172rpcnne0d 12935 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ((√‘𝑘) ∈ ℂ ∧ (√‘𝑘) ≠ 0))
174 div0 11801 . . . . . . . . . . . . 13 (((√‘𝑘) ∈ ℂ ∧ (√‘𝑘) ≠ 0) → (0 / (√‘𝑘)) = 0)
175173, 174syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (0 / (√‘𝑘)) = 0)
176170, 175eqtrd 2765 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = 0)
177127, 135, 176, 38fsumss 15624 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)))
17862nnrpd 12924 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑖 ∈ ℝ+)
179178rprege0d 12933 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖))
180 sqrtsq 15168 . . . . . . . . . . . . 13 ((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) → (√‘(𝑖↑2)) = 𝑖)
181179, 180syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑖↑2)) = 𝑖)
182181oveq2d 7357 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (1 / (√‘(𝑖↑2))) = (1 / 𝑖))
183182sumeq2dv 15601 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
184138, 177, 1833eqtr3d 2773 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
185131a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ)
18641ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈ ℕ)
18746ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
18847ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑋:(Base‘𝑍)⟶ℝ)
18939, 40, 186, 42, 43, 44, 45, 187, 188, 53dchrisum0flb 27441 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → if((√‘𝑘) ∈ ℕ, 1, 0) ≤ (𝐹𝑘))
190185, 52, 55, 189lediv1dd 12984 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ≤ ((𝐹𝑘) / (√‘𝑘)))
19138, 133, 56, 190fsumle 15698 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
192184, 191eqbrtrrd 5113 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
19321, 64, 57, 71, 192letrd 11262 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
19457leabsd 15314 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19521, 57, 59, 193, 194letrd 11262 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19637, 195eqbrtrd 5111 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘𝑥) / 2)) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19717, 18, 20, 11, 196o1le 15552 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 2)) ∈ 𝑂(1))
1985, 11, 16, 197o1mul2 15524 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · ((log‘𝑥) / 2))) ∈ 𝑂(1))
1999, 198eqeltrrd 2830 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1))
2001, 199mto 197 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  wrex 3054  {crab 3393  Vcvv 3434  cdif 3897  wss 3900  ifcif 4473   class class class wbr 5089  cmpt 5170  ran crn 5615  wf 6473  1-1wf1 6474  1-1-ontowf1o 6476  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998  1c1 10999   · cmul 11003   < clt 11138  cle 11139   / cdiv 11766  cn 12117  2c2 12172  +crp 12882  ...cfz 13399  cfl 13686  cexp 13960  csqrt 15132  abscabs 15133  𝑂(1)co1 15385  Σcsu 15585  cdvds 16155  Basecbs 17112  0gc0g 17335  ℤRHomczrh 21429  ℤ/nczn 21432  logclog 26483  DChrcdchr 27163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-xnn0 12447  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-o1 15389  df-lo1 15390  df-sum 15586  df-ef 15966  df-e 15967  df-sin 15968  df-cos 15969  df-tan 15970  df-pi 15971  df-dvds 16156  df-gcd 16398  df-prm 16575  df-numer 16638  df-denom 16639  df-pc 16741  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-qus 17405  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-nsg 19029  df-eqg 19030  df-ghm 19118  df-cntz 19222  df-od 19433  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-dvr 20312  df-rhm 20383  df-subrng 20454  df-subrg 20478  df-drng 20639  df-lmod 20788  df-lss 20858  df-lsp 20898  df-sra 21100  df-rgmod 21101  df-lidl 21138  df-rsp 21139  df-2idl 21180  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-zring 21377  df-zrh 21433  df-zn 21436  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-cmp 23295  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-limc 25787  df-dv 25788  df-ulm 26306  df-log 26485  df-cxp 26486  df-atan 26797  df-em 26923  df-dchr 27164
This theorem is referenced by:  dchrisum0  27451
  Copyright terms: Public domain W3C validator