MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fno1 Structured version   Visualization version   GIF version

Theorem dchrisum0fno1 27429
Description: The sum Σ𝑘𝑥, 𝐹(𝑥) / √𝑘 is divergent (i.e. not eventually bounded). Equation 9.4.30 of [Shapiro], p. 383. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0fno1.a (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ 𝑂(1))
Assertion
Ref Expression
dchrisum0fno1 ¬ 𝜑
Distinct variable groups:   𝑥,𝑘, 1   𝑘,𝐹,𝑥   𝑘,𝑏,𝑞,𝑣,𝑥   𝑘,𝑁,𝑞,𝑥   𝜑,𝑘,𝑥   𝑘,𝑍,𝑥   𝐷,𝑘,𝑥   𝐿,𝑏,𝑘,𝑣,𝑥   𝑋,𝑏,𝑘,𝑣,𝑥
Allowed substitution hints:   𝜑(𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑥,𝑣,𝑘,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0fno1
Dummy variables 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logno1 26552 . 2 ¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)
2 relogcl 26491 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
32adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
43recnd 11209 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
5 2cnd 12271 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
6 2ne0 12297 . . . . . 6 2 ≠ 0
76a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
84, 5, 7divcan2d 11967 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (2 · ((log‘𝑥) / 2)) = (log‘𝑥))
98mpteq2dva 5203 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · ((log‘𝑥) / 2))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
103rehalfcld 12436 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / 2) ∈ ℝ)
1110recnd 11209 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / 2) ∈ ℂ)
12 rpssre 12966 . . . . . 6 + ⊆ ℝ
13 2cn 12268 . . . . . 6 2 ∈ ℂ
14 o1const 15593 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
1512, 13, 14mp2an 692 . . . . 5 (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1)
1615a1i 11 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
17 1red 11182 . . . . 5 (𝜑 → 1 ∈ ℝ)
18 dchrisum0fno1.a . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ 𝑂(1))
19 sumex 15661 . . . . . 6 Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ V
2019a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ V)
2110adantrr 717 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ∈ ℝ)
222ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
23 log1 26501 . . . . . . . . 9 (log‘1) = 0
24 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
25 1rp 12962 . . . . . . . . . . 11 1 ∈ ℝ+
26 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
27 logleb 26519 . . . . . . . . . . 11 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
2825, 26, 27sylancr 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
2924, 28mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
3023, 29eqbrtrrid 5146 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
31 2re 12267 . . . . . . . . 9 2 ∈ ℝ
3231a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ∈ ℝ)
33 2pos 12296 . . . . . . . . 9 0 < 2
3433a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 < 2)
35 divge0 12059 . . . . . . . 8 ((((log‘𝑥) ∈ ℝ ∧ 0 ≤ (log‘𝑥)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ ((log‘𝑥) / 2))
3622, 30, 32, 34, 35syl22anc 838 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((log‘𝑥) / 2))
3721, 36absidd 15396 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘𝑥) / 2)) = ((log‘𝑥) / 2))
38 fzfid 13945 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
39 rpvmasum.z . . . . . . . . . . . 12 𝑍 = (ℤ/nℤ‘𝑁)
40 rpvmasum.l . . . . . . . . . . . 12 𝐿 = (ℤRHom‘𝑍)
41 rpvmasum.a . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
42 rpvmasum2.g . . . . . . . . . . . 12 𝐺 = (DChr‘𝑁)
43 rpvmasum2.d . . . . . . . . . . . 12 𝐷 = (Base‘𝐺)
44 rpvmasum2.1 . . . . . . . . . . . 12 1 = (0g𝐺)
45 dchrisum0f.f . . . . . . . . . . . 12 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
46 dchrisum0f.x . . . . . . . . . . . 12 (𝜑𝑋𝐷)
47 dchrisum0flb.r . . . . . . . . . . . 12 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
4839, 40, 41, 42, 43, 44, 45, 46, 47dchrisum0ff 27425 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ)
4948adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐹:ℕ⟶ℝ)
50 elfznn 13521 . . . . . . . . . 10 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
51 ffvelcdm 7056 . . . . . . . . . 10 ((𝐹:ℕ⟶ℝ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
5249, 50, 51syl2an 596 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (𝐹𝑘) ∈ ℝ)
5350adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
5453nnrpd 13000 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℝ+)
5554rpsqrtcld 15385 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (√‘𝑘) ∈ ℝ+)
5652, 55rerpdivcld 13033 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((𝐹𝑘) / (√‘𝑘)) ∈ ℝ)
5738, 56fsumrecl 15707 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ ℝ)
5857recnd 11209 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ∈ ℂ)
5958abscld 15412 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))) ∈ ℝ)
60 fzfid 13945 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘(√‘𝑥))) ∈ Fin)
61 elfznn 13521 . . . . . . . . . . 11 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → 𝑖 ∈ ℕ)
6261adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑖 ∈ ℕ)
6362nnrecred 12244 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (1 / 𝑖) ∈ ℝ)
6460, 63fsumrecl 15707 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖) ∈ ℝ)
65 logsqrt 26620 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘(√‘𝑥)) = ((log‘𝑥) / 2))
6665ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(√‘𝑥)) = ((log‘𝑥) / 2))
67 rpsqrtcl 15237 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
6867ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (√‘𝑥) ∈ ℝ+)
69 harmoniclbnd 26926 . . . . . . . . . 10 ((√‘𝑥) ∈ ℝ+ → (log‘(√‘𝑥)) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
7068, 69syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘(√‘𝑥)) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
7166, 70eqbrtrrd 5134 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
72 eqid 2730 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) = (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))
73 ovex 7423 . . . . . . . . . . . . . . . . 17 (𝑚↑2) ∈ V
7472, 73elrnmpti 5929 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ↔ ∃𝑚 ∈ (1...(⌊‘(√‘𝑥)))𝑘 = (𝑚↑2))
75 elfznn 13521 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → 𝑚 ∈ ℕ)
7675adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ∈ ℕ)
7776nnrpd 13000 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ∈ ℝ+)
7877rprege0d 13009 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
79 sqrtsq 15242 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) → (√‘(𝑚↑2)) = 𝑚)
8078, 79syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑚↑2)) = 𝑚)
8180, 76eqeltrd 2829 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑚↑2)) ∈ ℕ)
82 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑚↑2) → (√‘𝑘) = (√‘(𝑚↑2)))
8382eleq1d 2814 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑚↑2) → ((√‘𝑘) ∈ ℕ ↔ (√‘(𝑚↑2)) ∈ ℕ))
8481, 83syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑘 = (𝑚↑2) → (√‘𝑘) ∈ ℕ))
8584rexlimdva 3135 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∃𝑚 ∈ (1...(⌊‘(√‘𝑥)))𝑘 = (𝑚↑2) → (√‘𝑘) ∈ ℕ))
8674, 85biimtrid 242 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) → (√‘𝑘) ∈ ℕ))
8786imp 406 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (√‘𝑘) ∈ ℕ)
8887iftrued 4499 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → if((√‘𝑘) ∈ ℕ, 1, 0) = 1)
8988oveq1d 7405 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = (1 / (√‘𝑘)))
9089sumeq2dv 15675 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(1 / (√‘𝑘)))
91 fveq2 6861 . . . . . . . . . . . . 13 (𝑘 = (𝑖↑2) → (√‘𝑘) = (√‘(𝑖↑2)))
9291oveq2d 7406 . . . . . . . . . . . 12 (𝑘 = (𝑖↑2) → (1 / (√‘𝑘)) = (1 / (√‘(𝑖↑2))))
9376nnsqcld 14216 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ∈ ℕ)
9468rpred 13002 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (√‘𝑥) ∈ ℝ)
95 fznnfl 13831 . . . . . . . . . . . . . . . . . . . 20 ((√‘𝑥) ∈ ℝ → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (√‘𝑥))))
9694, 95syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (√‘𝑥))))
9796simplbda 499 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑚 ≤ (√‘𝑥))
9868adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘𝑥) ∈ ℝ+)
9998rprege0d 13009 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((√‘𝑥) ∈ ℝ ∧ 0 ≤ (√‘𝑥)))
100 le2sq 14106 . . . . . . . . . . . . . . . . . . 19 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ ((√‘𝑥) ∈ ℝ ∧ 0 ≤ (√‘𝑥))) → (𝑚 ≤ (√‘𝑥) ↔ (𝑚↑2) ≤ ((√‘𝑥)↑2)))
10178, 99, 100syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚 ≤ (√‘𝑥) ↔ (𝑚↑2) ≤ ((√‘𝑥)↑2)))
10297, 101mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ≤ ((√‘𝑥)↑2))
10326rpred 13002 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
104103adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑥 ∈ ℝ)
105104recnd 11209 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑥 ∈ ℂ)
106105sqsqrtd 15415 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((√‘𝑥)↑2) = 𝑥)
107102, 106breqtrd 5136 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ≤ 𝑥)
108 fznnfl 13831 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → ((𝑚↑2) ∈ (1...(⌊‘𝑥)) ↔ ((𝑚↑2) ∈ ℕ ∧ (𝑚↑2) ≤ 𝑥)))
109104, 108syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) ∈ (1...(⌊‘𝑥)) ↔ ((𝑚↑2) ∈ ℕ ∧ (𝑚↑2) ≤ 𝑥)))
11093, 107, 109mpbir2and 713 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑚↑2) ∈ (1...(⌊‘𝑥)))
111110ex 412 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → (𝑚↑2) ∈ (1...(⌊‘𝑥))))
11275nnrpd 13000 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → 𝑚 ∈ ℝ+)
113112rprege0d 13009 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (1...(⌊‘(√‘𝑥))) → (𝑚 ∈ ℝ ∧ 0 ≤ 𝑚))
11461nnrpd 13000 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → 𝑖 ∈ ℝ+)
115114rprege0d 13009 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖))
116 sq11 14103 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℝ ∧ 0 ≤ 𝑚) ∧ (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖)) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖))
117113, 115, 116syl2an 596 . . . . . . . . . . . . . . 15 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖))
118117a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚↑2) = (𝑖↑2) ↔ 𝑚 = 𝑖)))
119111, 118dom2lem 8966 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)))
120 f1f1orn 6814 . . . . . . . . . . . . 13 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1-onto→ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
121119, 120syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1-onto→ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
122 oveq1 7397 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚↑2) = (𝑖↑2))
123122, 72, 73fvmpt3i 6976 . . . . . . . . . . . . 13 (𝑖 ∈ (1...(⌊‘(√‘𝑥))) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))‘𝑖) = (𝑖↑2))
124123adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))‘𝑖) = (𝑖↑2))
125 f1f 6759 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))–1-1→(1...(⌊‘𝑥)) → (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))⟶(1...(⌊‘𝑥)))
126 frn 6698 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)):(1...(⌊‘(√‘𝑥)))⟶(1...(⌊‘𝑥)) → ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ⊆ (1...(⌊‘𝑥)))
127119, 125, 1263syl 18 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) ⊆ (1...(⌊‘𝑥)))
128127sselda 3949 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → 𝑘 ∈ (1...(⌊‘𝑥)))
129 1re 11181 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
130 0re 11183 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
131129, 130ifcli 4539 . . . . . . . . . . . . . . . 16 if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ
132 rerpdivcl 12990 . . . . . . . . . . . . . . . 16 ((if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ ∧ (√‘𝑘) ∈ ℝ+) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℝ)
133131, 55, 132sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℝ)
134133recnd 11209 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℂ)
135128, 134syldan 591 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ∈ ℂ)
13689, 135eqeltrrd 2830 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → (1 / (√‘𝑘)) ∈ ℂ)
13792, 60, 121, 124, 136fsumf1o 15696 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(1 / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))))
13890, 137eqtrd 2765 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))))
139 eldif 3927 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) ↔ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ ¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))))
14050ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℕ)
141140nncnd 12209 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℂ)
142141sqsqrtd 15415 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) = 𝑘)
143 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ∈ ℕ)
144 fznnfl 13831 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ → (𝑘 ∈ (1...(⌊‘𝑥)) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑥)))
145103, 144syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑘 ∈ (1...(⌊‘𝑥)) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑥)))
146145simplbda 499 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘𝑥)
147146adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘𝑥)
148140nnrpd 13000 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ℝ+)
149148rprege0d 13009 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑘 ∈ ℝ ∧ 0 ≤ 𝑘))
15026adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑥 ∈ ℝ+)
151150rprege0d 13009 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
152 sqrtle 15233 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑘𝑥 ↔ (√‘𝑘) ≤ (√‘𝑥)))
153149, 151, 152syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (𝑘𝑥 ↔ (√‘𝑘) ≤ (√‘𝑥)))
154147, 153mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ≤ (√‘𝑥))
15568adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑥) ∈ ℝ+)
156155rpred 13002 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑥) ∈ ℝ)
157 fznnfl 13831 . . . . . . . . . . . . . . . . . . . . . 22 ((√‘𝑥) ∈ ℝ → ((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ↔ ((√‘𝑘) ∈ ℕ ∧ (√‘𝑘) ≤ (√‘𝑥))))
158156, 157syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ↔ ((√‘𝑘) ∈ ℕ ∧ (√‘𝑘) ≤ (√‘𝑥))))
159143, 154, 158mpbir2and 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → (√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))))
160142, 140eqeltrd 2829 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) ∈ ℕ)
161 oveq1 7397 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = (√‘𝑘) → (𝑚↑2) = ((√‘𝑘)↑2))
16272, 161elrnmpt1s 5926 . . . . . . . . . . . . . . . . . . . 20 (((√‘𝑘) ∈ (1...(⌊‘(√‘𝑥))) ∧ ((√‘𝑘)↑2) ∈ ℕ) → ((√‘𝑘)↑2) ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
163159, 160, 162syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → ((√‘𝑘)↑2) ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
164142, 163eqeltrrd 2830 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ (√‘𝑘) ∈ ℕ)) → 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))
165164expr 456 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((√‘𝑘) ∈ ℕ → 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))))
166165con3d 152 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)) → ¬ (√‘𝑘) ∈ ℕ))
167166impr 454 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ ¬ 𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ¬ (√‘𝑘) ∈ ℕ)
168139, 167sylan2b 594 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ¬ (√‘𝑘) ∈ ℕ)
169168iffalsed 4502 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → if((√‘𝑘) ∈ ℕ, 1, 0) = 0)
170169oveq1d 7405 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = (0 / (√‘𝑘)))
171 eldifi 4097 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))) → 𝑘 ∈ (1...(⌊‘𝑥)))
172171, 55sylan2 593 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (√‘𝑘) ∈ ℝ+)
173172rpcnne0d 13011 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → ((√‘𝑘) ∈ ℂ ∧ (√‘𝑘) ≠ 0))
174 div0 11877 . . . . . . . . . . . . 13 (((√‘𝑘) ∈ ℂ ∧ (√‘𝑘) ≠ 0) → (0 / (√‘𝑘)) = 0)
175173, 174syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (0 / (√‘𝑘)) = 0)
176170, 175eqtrd 2765 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ ((1...(⌊‘𝑥)) ∖ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2)))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = 0)
177127, 135, 176, 38fsumss 15698 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ ran (𝑚 ∈ (1...(⌊‘(√‘𝑥))) ↦ (𝑚↑2))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)))
17862nnrpd 13000 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → 𝑖 ∈ ℝ+)
179178rprege0d 13009 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖))
180 sqrtsq 15242 . . . . . . . . . . . . 13 ((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) → (√‘(𝑖↑2)) = 𝑖)
181179, 180syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (√‘(𝑖↑2)) = 𝑖)
182181oveq2d 7406 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑖 ∈ (1...(⌊‘(√‘𝑥)))) → (1 / (√‘(𝑖↑2))) = (1 / 𝑖))
183182sumeq2dv 15675 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / (√‘(𝑖↑2))) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
184138, 177, 1833eqtr3d 2773 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) = Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖))
185131a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → if((√‘𝑘) ∈ ℕ, 1, 0) ∈ ℝ)
18641ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈ ℕ)
18746ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
18847ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑋:(Base‘𝑍)⟶ℝ)
18939, 40, 186, 42, 43, 44, 45, 187, 188, 53dchrisum0flb 27428 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → if((√‘𝑘) ∈ ℕ, 1, 0) ≤ (𝐹𝑘))
190185, 52, 55, 189lediv1dd 13060 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ≤ ((𝐹𝑘) / (√‘𝑘)))
19138, 133, 56, 190fsumle 15772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))(if((√‘𝑘) ∈ ℕ, 1, 0) / (√‘𝑘)) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
192184, 191eqbrtrrd 5134 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑖 ∈ (1...(⌊‘(√‘𝑥)))(1 / 𝑖) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
19321, 64, 57, 71, 192letrd 11338 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)))
19457leabsd 15388 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘)) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19521, 57, 59, 193, 194letrd 11338 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) / 2) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19637, 195eqbrtrd 5132 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((log‘𝑥) / 2)) ≤ (abs‘Σ𝑘 ∈ (1...(⌊‘𝑥))((𝐹𝑘) / (√‘𝑘))))
19717, 18, 20, 11, 196o1le 15626 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 2)) ∈ 𝑂(1))
1985, 11, 16, 197o1mul2 15598 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · ((log‘𝑥) / 2))) ∈ 𝑂(1))
1999, 198eqeltrrd 2830 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1))
2001, 199mto 197 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  ran crn 5642  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842  cn 12193  2c2 12248  +crp 12958  ...cfz 13475  cfl 13759  cexp 14033  csqrt 15206  abscabs 15207  𝑂(1)co1 15459  Σcsu 15659  cdvds 16229  Basecbs 17186  0gc0g 17409  ℤRHomczrh 21416  ℤ/nczn 21419  logclog 26470  DChrcdchr 27150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-o1 15463  df-lo1 15464  df-sum 15660  df-ef 16040  df-e 16041  df-sin 16042  df-cos 16043  df-tan 16044  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-numer 16712  df-denom 16713  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-qus 17479  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-cntz 19256  df-od 19465  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-zn 21423  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-ulm 26293  df-log 26472  df-cxp 26473  df-atan 26784  df-em 26910  df-dchr 27151
This theorem is referenced by:  dchrisum0  27438
  Copyright terms: Public domain W3C validator