MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0gsumle Structured version   Visualization version   GIF version

Theorem xrge0gsumle 24762
Description: A finite sum in the nonnegative extended reals is monotonic in the support. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
xrge0gsumle.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0gsumle.a (𝜑𝐴𝑉)
xrge0gsumle.f (𝜑𝐹:𝐴⟶(0[,]+∞))
xrge0gsumle.b (𝜑𝐵 ∈ (𝒫 𝐴 ∩ Fin))
xrge0gsumle.c (𝜑𝐶𝐵)
Assertion
Ref Expression
xrge0gsumle (𝜑 → (𝐺 Σg (𝐹𝐶)) ≤ (𝐺 Σg (𝐹𝐵)))

Proof of Theorem xrge0gsumle
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 13440 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 xrge0gsumle.g . . . . . . . . . 10 𝐺 = (ℝ*𝑠s (0[,]+∞))
3 xrsbas 21311 . . . . . . . . . 10 * = (Base‘ℝ*𝑠)
42, 3ressbas2 17218 . . . . . . . . 9 ((0[,]+∞) ⊆ ℝ* → (0[,]+∞) = (Base‘𝐺))
51, 4ax-mp 5 . . . . . . . 8 (0[,]+∞) = (Base‘𝐺)
6 eqid 2728 . . . . . . . . . 10 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
76xrge0subm 21340 . . . . . . . . 9 (0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
8 xrex 13002 . . . . . . . . . . . . 13 * ∈ V
98difexi 5330 . . . . . . . . . . . 12 (ℝ* ∖ {-∞}) ∈ V
10 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
11 ge0nemnf 13185 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞)
1210, 11jca 511 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ*𝑥 ≠ -∞))
13 elxrge0 13467 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
14 eldifsn 4791 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
1512, 13, 143imtr4i 292 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
1615ssriv 3984 . . . . . . . . . . . 12 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
17 ressabs 17230 . . . . . . . . . . . 12 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
189, 16, 17mp2an 691 . . . . . . . . . . 11 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
192, 18eqtr4i 2759 . . . . . . . . . 10 𝐺 = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
206xrs10 21338 . . . . . . . . . 10 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
2119, 20subm0 18767 . . . . . . . . 9 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → 0 = (0g𝐺))
227, 21ax-mp 5 . . . . . . . 8 0 = (0g𝐺)
23 xrge0cmn 21341 . . . . . . . . . 10 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
242, 23eqeltri 2825 . . . . . . . . 9 𝐺 ∈ CMnd
2524a1i 11 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
26 elfpw 9379 . . . . . . . . . 10 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑠𝐴𝑠 ∈ Fin))
2726simprbi 496 . . . . . . . . 9 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠 ∈ Fin)
2827adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑠 ∈ Fin)
29 xrge0gsumle.f . . . . . . . . 9 (𝜑𝐹:𝐴⟶(0[,]+∞))
3026simplbi 497 . . . . . . . . 9 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠𝐴)
31 fssres 6763 . . . . . . . . 9 ((𝐹:𝐴⟶(0[,]+∞) ∧ 𝑠𝐴) → (𝐹𝑠):𝑠⟶(0[,]+∞))
3229, 30, 31syl2an 595 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠):𝑠⟶(0[,]+∞))
33 c0ex 11239 . . . . . . . . . 10 0 ∈ V
3433a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ V)
3532, 28, 34fdmfifsupp 9399 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠) finSupp 0)
365, 22, 25, 28, 32, 35gsumcl 19870 . . . . . . 7 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ (0[,]+∞))
371, 36sselid 3978 . . . . . 6 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ ℝ*)
3837fmpttd 7125 . . . . 5 (𝜑 → (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))):(𝒫 𝐴 ∩ Fin)⟶ℝ*)
3938frnd 6730 . . . 4 (𝜑 → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
40 0ss 4397 . . . . . . 7 ∅ ⊆ 𝐴
41 0fin 9196 . . . . . . 7 ∅ ∈ Fin
42 elfpw 9379 . . . . . . 7 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ⊆ 𝐴 ∧ ∅ ∈ Fin))
4340, 41, 42mpbir2an 710 . . . . . 6 ∅ ∈ (𝒫 𝐴 ∩ Fin)
44 0cn 11237 . . . . . 6 0 ∈ ℂ
45 eqid 2728 . . . . . . 7 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) = (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
46 reseq2 5980 . . . . . . . . . 10 (𝑠 = ∅ → (𝐹𝑠) = (𝐹 ↾ ∅))
47 res0 5989 . . . . . . . . . 10 (𝐹 ↾ ∅) = ∅
4846, 47eqtrdi 2784 . . . . . . . . 9 (𝑠 = ∅ → (𝐹𝑠) = ∅)
4948oveq2d 7436 . . . . . . . 8 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg ∅))
5022gsum0 18644 . . . . . . . 8 (𝐺 Σg ∅) = 0
5149, 50eqtrdi 2784 . . . . . . 7 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = 0)
5245, 51elrnmpt1s 5959 . . . . . 6 ((∅ ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 ∈ ℂ) → 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
5343, 44, 52mp2an 691 . . . . 5 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
5453a1i 11 . . . 4 (𝜑 → 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
5539, 54sseldd 3981 . . 3 (𝜑 → 0 ∈ ℝ*)
5624a1i 11 . . . . 5 (𝜑𝐺 ∈ CMnd)
57 xrge0gsumle.b . . . . . . 7 (𝜑𝐵 ∈ (𝒫 𝐴 ∩ Fin))
5857elin2d 4199 . . . . . 6 (𝜑𝐵 ∈ Fin)
59 diffi 9204 . . . . . 6 (𝐵 ∈ Fin → (𝐵𝐶) ∈ Fin)
6058, 59syl 17 . . . . 5 (𝜑 → (𝐵𝐶) ∈ Fin)
61 elfpw 9379 . . . . . . . . 9 (𝐵 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐵𝐴𝐵 ∈ Fin))
6261simplbi 497 . . . . . . . 8 (𝐵 ∈ (𝒫 𝐴 ∩ Fin) → 𝐵𝐴)
6357, 62syl 17 . . . . . . 7 (𝜑𝐵𝐴)
6463ssdifssd 4141 . . . . . 6 (𝜑 → (𝐵𝐶) ⊆ 𝐴)
6529, 64fssresd 6764 . . . . 5 (𝜑 → (𝐹 ↾ (𝐵𝐶)):(𝐵𝐶)⟶(0[,]+∞))
6633a1i 11 . . . . . 6 (𝜑 → 0 ∈ V)
6765, 60, 66fdmfifsupp 9399 . . . . 5 (𝜑 → (𝐹 ↾ (𝐵𝐶)) finSupp 0)
685, 22, 56, 60, 65, 67gsumcl 19870 . . . 4 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞))
691, 68sselid 3978 . . 3 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ*)
70 xrge0gsumle.c . . . . . 6 (𝜑𝐶𝐵)
7158, 70ssfid 9292 . . . . 5 (𝜑𝐶 ∈ Fin)
7270, 63sstrd 3990 . . . . . 6 (𝜑𝐶𝐴)
7329, 72fssresd 6764 . . . . 5 (𝜑 → (𝐹𝐶):𝐶⟶(0[,]+∞))
7473, 71, 66fdmfifsupp 9399 . . . . 5 (𝜑 → (𝐹𝐶) finSupp 0)
755, 22, 56, 71, 73, 74gsumcl 19870 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐶)) ∈ (0[,]+∞))
761, 75sselid 3978 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐶)) ∈ ℝ*)
77 elxrge0 13467 . . . . 5 ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞) ↔ ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ* ∧ 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
7877simprbi 496 . . . 4 ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞) → 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
7968, 78syl 17 . . 3 (𝜑 → 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
80 xleadd2a 13266 . . 3 (((0 ∈ ℝ* ∧ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ* ∧ (𝐺 Σg (𝐹𝐶)) ∈ ℝ*) ∧ 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))) → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) ≤ ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
8155, 69, 76, 79, 80syl31anc 1371 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) ≤ ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
8276xaddridd 13255 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) = (𝐺 Σg (𝐹𝐶)))
83 ovex 7453 . . . . 5 (0[,]+∞) ∈ V
84 xrsadd 21312 . . . . . 6 +𝑒 = (+g‘ℝ*𝑠)
852, 84ressplusg 17271 . . . . 5 ((0[,]+∞) ∈ V → +𝑒 = (+g𝐺))
8683, 85ax-mp 5 . . . 4 +𝑒 = (+g𝐺)
8729, 63fssresd 6764 . . . 4 (𝜑 → (𝐹𝐵):𝐵⟶(0[,]+∞))
8887, 58, 66fdmfifsupp 9399 . . . 4 (𝜑 → (𝐹𝐵) finSupp 0)
89 disjdif 4472 . . . . 5 (𝐶 ∩ (𝐵𝐶)) = ∅
9089a1i 11 . . . 4 (𝜑 → (𝐶 ∩ (𝐵𝐶)) = ∅)
91 undif2 4477 . . . . 5 (𝐶 ∪ (𝐵𝐶)) = (𝐶𝐵)
92 ssequn1 4180 . . . . . 6 (𝐶𝐵 ↔ (𝐶𝐵) = 𝐵)
9370, 92sylib 217 . . . . 5 (𝜑 → (𝐶𝐵) = 𝐵)
9491, 93eqtr2id 2781 . . . 4 (𝜑𝐵 = (𝐶 ∪ (𝐵𝐶)))
955, 22, 86, 56, 57, 87, 88, 90, 94gsumsplit 19883 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐵)) = ((𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) +𝑒 (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶)))))
9670resabs1d 6016 . . . . 5 (𝜑 → ((𝐹𝐵) ↾ 𝐶) = (𝐹𝐶))
9796oveq2d 7436 . . . 4 (𝜑 → (𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) = (𝐺 Σg (𝐹𝐶)))
98 difss 4130 . . . . . 6 (𝐵𝐶) ⊆ 𝐵
99 resabs1 6015 . . . . . 6 ((𝐵𝐶) ⊆ 𝐵 → ((𝐹𝐵) ↾ (𝐵𝐶)) = (𝐹 ↾ (𝐵𝐶)))
10098, 99mp1i 13 . . . . 5 (𝜑 → ((𝐹𝐵) ↾ (𝐵𝐶)) = (𝐹 ↾ (𝐵𝐶)))
101100oveq2d 7436 . . . 4 (𝜑 → (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶))) = (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
10297, 101oveq12d 7438 . . 3 (𝜑 → ((𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) +𝑒 (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶)))) = ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
10395, 102eqtr2d 2769 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))) = (𝐺 Σg (𝐹𝐵)))
10481, 82, 1033brtr3d 5179 1 (𝜑 → (𝐺 Σg (𝐹𝐶)) ≤ (𝐺 Σg (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2937  Vcvv 3471  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4323  𝒫 cpw 4603  {csn 4629   class class class wbr 5148  cmpt 5231  ran crn 5679  cres 5680  wf 6544  cfv 6548  (class class class)co 7420  Fincfn 8964  cc 11137  0cc0 11139  +∞cpnf 11276  -∞cmnf 11277  *cxr 11278  cle 11280   +𝑒 cxad 13123  [,]cicc 13360  Basecbs 17180  s cress 17209  +gcplusg 17233  0gc0g 17421   Σg cgsu 17422  *𝑠cxrs 17482  SubMndcsubmnd 18739  CMndccmn 19735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-xadd 13126  df-icc 13364  df-fz 13518  df-fzo 13661  df-seq 14000  df-hash 14323  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-tset 17252  df-ple 17253  df-ds 17255  df-0g 17423  df-gsum 17424  df-xrs 17484  df-mre 17566  df-mrc 17567  df-acs 17569  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-cntz 19268  df-cmn 19737
This theorem is referenced by:  xrge0tsms  24763  xrge0tsmsd  32784
  Copyright terms: Public domain W3C validator