MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0gsumle Structured version   Visualization version   GIF version

Theorem xrge0gsumle 24729
Description: A finite sum in the nonnegative extended reals is monotonic in the support. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
xrge0gsumle.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0gsumle.a (𝜑𝐴𝑉)
xrge0gsumle.f (𝜑𝐹:𝐴⟶(0[,]+∞))
xrge0gsumle.b (𝜑𝐵 ∈ (𝒫 𝐴 ∩ Fin))
xrge0gsumle.c (𝜑𝐶𝐵)
Assertion
Ref Expression
xrge0gsumle (𝜑 → (𝐺 Σg (𝐹𝐶)) ≤ (𝐺 Σg (𝐹𝐵)))

Proof of Theorem xrge0gsumle
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 13398 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 xrge0gsumle.g . . . . . . . . . 10 𝐺 = (ℝ*𝑠s (0[,]+∞))
3 xrsbas 21302 . . . . . . . . . 10 * = (Base‘ℝ*𝑠)
42, 3ressbas2 17215 . . . . . . . . 9 ((0[,]+∞) ⊆ ℝ* → (0[,]+∞) = (Base‘𝐺))
51, 4ax-mp 5 . . . . . . . 8 (0[,]+∞) = (Base‘𝐺)
6 eqid 2730 . . . . . . . . . 10 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
76xrge0subm 21331 . . . . . . . . 9 (0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
8 xrex 12953 . . . . . . . . . . . . 13 * ∈ V
98difexi 5288 . . . . . . . . . . . 12 (ℝ* ∖ {-∞}) ∈ V
10 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
11 ge0nemnf 13140 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞)
1210, 11jca 511 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ*𝑥 ≠ -∞))
13 elxrge0 13425 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
14 eldifsn 4753 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
1512, 13, 143imtr4i 292 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
1615ssriv 3953 . . . . . . . . . . . 12 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
17 ressabs 17225 . . . . . . . . . . . 12 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
189, 16, 17mp2an 692 . . . . . . . . . . 11 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
192, 18eqtr4i 2756 . . . . . . . . . 10 𝐺 = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
206xrs10 21329 . . . . . . . . . 10 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
2119, 20subm0 18749 . . . . . . . . 9 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → 0 = (0g𝐺))
227, 21ax-mp 5 . . . . . . . 8 0 = (0g𝐺)
23 xrge0cmn 21332 . . . . . . . . . 10 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
242, 23eqeltri 2825 . . . . . . . . 9 𝐺 ∈ CMnd
2524a1i 11 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
26 elfpw 9312 . . . . . . . . . 10 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑠𝐴𝑠 ∈ Fin))
2726simprbi 496 . . . . . . . . 9 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠 ∈ Fin)
2827adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑠 ∈ Fin)
29 xrge0gsumle.f . . . . . . . . 9 (𝜑𝐹:𝐴⟶(0[,]+∞))
3026simplbi 497 . . . . . . . . 9 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠𝐴)
31 fssres 6729 . . . . . . . . 9 ((𝐹:𝐴⟶(0[,]+∞) ∧ 𝑠𝐴) → (𝐹𝑠):𝑠⟶(0[,]+∞))
3229, 30, 31syl2an 596 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠):𝑠⟶(0[,]+∞))
33 c0ex 11175 . . . . . . . . . 10 0 ∈ V
3433a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ V)
3532, 28, 34fdmfifsupp 9333 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠) finSupp 0)
365, 22, 25, 28, 32, 35gsumcl 19852 . . . . . . 7 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ (0[,]+∞))
371, 36sselid 3947 . . . . . 6 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ ℝ*)
3837fmpttd 7090 . . . . 5 (𝜑 → (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))):(𝒫 𝐴 ∩ Fin)⟶ℝ*)
3938frnd 6699 . . . 4 (𝜑 → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
40 0ss 4366 . . . . . . 7 ∅ ⊆ 𝐴
41 0fi 9016 . . . . . . 7 ∅ ∈ Fin
42 elfpw 9312 . . . . . . 7 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ⊆ 𝐴 ∧ ∅ ∈ Fin))
4340, 41, 42mpbir2an 711 . . . . . 6 ∅ ∈ (𝒫 𝐴 ∩ Fin)
44 0cn 11173 . . . . . 6 0 ∈ ℂ
45 eqid 2730 . . . . . . 7 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) = (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
46 reseq2 5948 . . . . . . . . . 10 (𝑠 = ∅ → (𝐹𝑠) = (𝐹 ↾ ∅))
47 res0 5957 . . . . . . . . . 10 (𝐹 ↾ ∅) = ∅
4846, 47eqtrdi 2781 . . . . . . . . 9 (𝑠 = ∅ → (𝐹𝑠) = ∅)
4948oveq2d 7406 . . . . . . . 8 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg ∅))
5022gsum0 18618 . . . . . . . 8 (𝐺 Σg ∅) = 0
5149, 50eqtrdi 2781 . . . . . . 7 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = 0)
5245, 51elrnmpt1s 5926 . . . . . 6 ((∅ ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 ∈ ℂ) → 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
5343, 44, 52mp2an 692 . . . . 5 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
5453a1i 11 . . . 4 (𝜑 → 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
5539, 54sseldd 3950 . . 3 (𝜑 → 0 ∈ ℝ*)
5624a1i 11 . . . . 5 (𝜑𝐺 ∈ CMnd)
57 xrge0gsumle.b . . . . . . 7 (𝜑𝐵 ∈ (𝒫 𝐴 ∩ Fin))
5857elin2d 4171 . . . . . 6 (𝜑𝐵 ∈ Fin)
59 diffi 9145 . . . . . 6 (𝐵 ∈ Fin → (𝐵𝐶) ∈ Fin)
6058, 59syl 17 . . . . 5 (𝜑 → (𝐵𝐶) ∈ Fin)
61 elfpw 9312 . . . . . . . . 9 (𝐵 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐵𝐴𝐵 ∈ Fin))
6261simplbi 497 . . . . . . . 8 (𝐵 ∈ (𝒫 𝐴 ∩ Fin) → 𝐵𝐴)
6357, 62syl 17 . . . . . . 7 (𝜑𝐵𝐴)
6463ssdifssd 4113 . . . . . 6 (𝜑 → (𝐵𝐶) ⊆ 𝐴)
6529, 64fssresd 6730 . . . . 5 (𝜑 → (𝐹 ↾ (𝐵𝐶)):(𝐵𝐶)⟶(0[,]+∞))
6633a1i 11 . . . . . 6 (𝜑 → 0 ∈ V)
6765, 60, 66fdmfifsupp 9333 . . . . 5 (𝜑 → (𝐹 ↾ (𝐵𝐶)) finSupp 0)
685, 22, 56, 60, 65, 67gsumcl 19852 . . . 4 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞))
691, 68sselid 3947 . . 3 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ*)
70 xrge0gsumle.c . . . . . 6 (𝜑𝐶𝐵)
7158, 70ssfid 9219 . . . . 5 (𝜑𝐶 ∈ Fin)
7270, 63sstrd 3960 . . . . . 6 (𝜑𝐶𝐴)
7329, 72fssresd 6730 . . . . 5 (𝜑 → (𝐹𝐶):𝐶⟶(0[,]+∞))
7473, 71, 66fdmfifsupp 9333 . . . . 5 (𝜑 → (𝐹𝐶) finSupp 0)
755, 22, 56, 71, 73, 74gsumcl 19852 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐶)) ∈ (0[,]+∞))
761, 75sselid 3947 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐶)) ∈ ℝ*)
77 elxrge0 13425 . . . . 5 ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞) ↔ ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ* ∧ 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
7877simprbi 496 . . . 4 ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞) → 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
7968, 78syl 17 . . 3 (𝜑 → 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
80 xleadd2a 13221 . . 3 (((0 ∈ ℝ* ∧ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ* ∧ (𝐺 Σg (𝐹𝐶)) ∈ ℝ*) ∧ 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))) → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) ≤ ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
8155, 69, 76, 79, 80syl31anc 1375 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) ≤ ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
8276xaddridd 13210 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) = (𝐺 Σg (𝐹𝐶)))
83 ovex 7423 . . . . 5 (0[,]+∞) ∈ V
84 xrsadd 21303 . . . . . 6 +𝑒 = (+g‘ℝ*𝑠)
852, 84ressplusg 17261 . . . . 5 ((0[,]+∞) ∈ V → +𝑒 = (+g𝐺))
8683, 85ax-mp 5 . . . 4 +𝑒 = (+g𝐺)
8729, 63fssresd 6730 . . . 4 (𝜑 → (𝐹𝐵):𝐵⟶(0[,]+∞))
8887, 58, 66fdmfifsupp 9333 . . . 4 (𝜑 → (𝐹𝐵) finSupp 0)
89 disjdif 4438 . . . . 5 (𝐶 ∩ (𝐵𝐶)) = ∅
9089a1i 11 . . . 4 (𝜑 → (𝐶 ∩ (𝐵𝐶)) = ∅)
91 undif2 4443 . . . . 5 (𝐶 ∪ (𝐵𝐶)) = (𝐶𝐵)
92 ssequn1 4152 . . . . . 6 (𝐶𝐵 ↔ (𝐶𝐵) = 𝐵)
9370, 92sylib 218 . . . . 5 (𝜑 → (𝐶𝐵) = 𝐵)
9491, 93eqtr2id 2778 . . . 4 (𝜑𝐵 = (𝐶 ∪ (𝐵𝐶)))
955, 22, 86, 56, 57, 87, 88, 90, 94gsumsplit 19865 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐵)) = ((𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) +𝑒 (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶)))))
9670resabs1d 5982 . . . . 5 (𝜑 → ((𝐹𝐵) ↾ 𝐶) = (𝐹𝐶))
9796oveq2d 7406 . . . 4 (𝜑 → (𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) = (𝐺 Σg (𝐹𝐶)))
98 difss 4102 . . . . . 6 (𝐵𝐶) ⊆ 𝐵
99 resabs1 5980 . . . . . 6 ((𝐵𝐶) ⊆ 𝐵 → ((𝐹𝐵) ↾ (𝐵𝐶)) = (𝐹 ↾ (𝐵𝐶)))
10098, 99mp1i 13 . . . . 5 (𝜑 → ((𝐹𝐵) ↾ (𝐵𝐶)) = (𝐹 ↾ (𝐵𝐶)))
101100oveq2d 7406 . . . 4 (𝜑 → (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶))) = (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
10297, 101oveq12d 7408 . . 3 (𝜑 → ((𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) +𝑒 (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶)))) = ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
10395, 102eqtr2d 2766 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))) = (𝐺 Σg (𝐹𝐵)))
10481, 82, 1033brtr3d 5141 1 (𝜑 → (𝐺 Σg (𝐹𝐶)) ≤ (𝐺 Σg (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  cmpt 5191  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  0cc0 11075  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214  cle 11216   +𝑒 cxad 13077  [,]cicc 13316  Basecbs 17186  s cress 17207  +gcplusg 17227  0gc0g 17409   Σg cgsu 17410  *𝑠cxrs 17470  SubMndcsubmnd 18716  CMndccmn 19717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-xadd 13080  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-gsum 17412  df-xrs 17472  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-cntz 19256  df-cmn 19719
This theorem is referenced by:  xrge0tsms  24730  xrge0tsmsd  33009
  Copyright terms: Public domain W3C validator