MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0gsumle Structured version   Visualization version   GIF version

Theorem xrge0gsumle 23438
Description: A finite sum in the nonnegative extended reals is monotonic in the support. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
xrge0gsumle.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0gsumle.a (𝜑𝐴𝑉)
xrge0gsumle.f (𝜑𝐹:𝐴⟶(0[,]+∞))
xrge0gsumle.b (𝜑𝐵 ∈ (𝒫 𝐴 ∩ Fin))
xrge0gsumle.c (𝜑𝐶𝐵)
Assertion
Ref Expression
xrge0gsumle (𝜑 → (𝐺 Σg (𝐹𝐶)) ≤ (𝐺 Σg (𝐹𝐵)))

Proof of Theorem xrge0gsumle
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 12808 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 xrge0gsumle.g . . . . . . . . . 10 𝐺 = (ℝ*𝑠s (0[,]+∞))
3 xrsbas 20107 . . . . . . . . . 10 * = (Base‘ℝ*𝑠)
42, 3ressbas2 16547 . . . . . . . . 9 ((0[,]+∞) ⊆ ℝ* → (0[,]+∞) = (Base‘𝐺))
51, 4ax-mp 5 . . . . . . . 8 (0[,]+∞) = (Base‘𝐺)
6 eqid 2798 . . . . . . . . . 10 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
76xrge0subm 20132 . . . . . . . . 9 (0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
8 xrex 12374 . . . . . . . . . . . . 13 * ∈ V
98difexi 5196 . . . . . . . . . . . 12 (ℝ* ∖ {-∞}) ∈ V
10 simpl 486 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
11 ge0nemnf 12554 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞)
1210, 11jca 515 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ*𝑥 ≠ -∞))
13 elxrge0 12835 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
14 eldifsn 4680 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
1512, 13, 143imtr4i 295 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
1615ssriv 3919 . . . . . . . . . . . 12 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
17 ressabs 16555 . . . . . . . . . . . 12 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
189, 16, 17mp2an 691 . . . . . . . . . . 11 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
192, 18eqtr4i 2824 . . . . . . . . . 10 𝐺 = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
206xrs10 20130 . . . . . . . . . 10 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
2119, 20subm0 17972 . . . . . . . . 9 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → 0 = (0g𝐺))
227, 21ax-mp 5 . . . . . . . 8 0 = (0g𝐺)
23 xrge0cmn 20133 . . . . . . . . . 10 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
242, 23eqeltri 2886 . . . . . . . . 9 𝐺 ∈ CMnd
2524a1i 11 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
26 elfpw 8810 . . . . . . . . . 10 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑠𝐴𝑠 ∈ Fin))
2726simprbi 500 . . . . . . . . 9 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠 ∈ Fin)
2827adantl 485 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑠 ∈ Fin)
29 xrge0gsumle.f . . . . . . . . 9 (𝜑𝐹:𝐴⟶(0[,]+∞))
3026simplbi 501 . . . . . . . . 9 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠𝐴)
31 fssres 6518 . . . . . . . . 9 ((𝐹:𝐴⟶(0[,]+∞) ∧ 𝑠𝐴) → (𝐹𝑠):𝑠⟶(0[,]+∞))
3229, 30, 31syl2an 598 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠):𝑠⟶(0[,]+∞))
33 c0ex 10624 . . . . . . . . . 10 0 ∈ V
3433a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ V)
3532, 28, 34fdmfifsupp 8827 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠) finSupp 0)
365, 22, 25, 28, 32, 35gsumcl 19028 . . . . . . 7 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ (0[,]+∞))
371, 36sseldi 3913 . . . . . 6 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ ℝ*)
3837fmpttd 6856 . . . . 5 (𝜑 → (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))):(𝒫 𝐴 ∩ Fin)⟶ℝ*)
3938frnd 6494 . . . 4 (𝜑 → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
40 0ss 4304 . . . . . . 7 ∅ ⊆ 𝐴
41 0fin 8730 . . . . . . 7 ∅ ∈ Fin
42 elfpw 8810 . . . . . . 7 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ⊆ 𝐴 ∧ ∅ ∈ Fin))
4340, 41, 42mpbir2an 710 . . . . . 6 ∅ ∈ (𝒫 𝐴 ∩ Fin)
44 0cn 10622 . . . . . 6 0 ∈ ℂ
45 eqid 2798 . . . . . . 7 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) = (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
46 reseq2 5813 . . . . . . . . . 10 (𝑠 = ∅ → (𝐹𝑠) = (𝐹 ↾ ∅))
47 res0 5822 . . . . . . . . . 10 (𝐹 ↾ ∅) = ∅
4846, 47eqtrdi 2849 . . . . . . . . 9 (𝑠 = ∅ → (𝐹𝑠) = ∅)
4948oveq2d 7151 . . . . . . . 8 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg ∅))
5022gsum0 17886 . . . . . . . 8 (𝐺 Σg ∅) = 0
5149, 50eqtrdi 2849 . . . . . . 7 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = 0)
5245, 51elrnmpt1s 5793 . . . . . 6 ((∅ ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 ∈ ℂ) → 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
5343, 44, 52mp2an 691 . . . . 5 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
5453a1i 11 . . . 4 (𝜑 → 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
5539, 54sseldd 3916 . . 3 (𝜑 → 0 ∈ ℝ*)
5624a1i 11 . . . . 5 (𝜑𝐺 ∈ CMnd)
57 xrge0gsumle.b . . . . . . 7 (𝜑𝐵 ∈ (𝒫 𝐴 ∩ Fin))
5857elin2d 4126 . . . . . 6 (𝜑𝐵 ∈ Fin)
59 diffi 8734 . . . . . 6 (𝐵 ∈ Fin → (𝐵𝐶) ∈ Fin)
6058, 59syl 17 . . . . 5 (𝜑 → (𝐵𝐶) ∈ Fin)
61 elfpw 8810 . . . . . . . . 9 (𝐵 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐵𝐴𝐵 ∈ Fin))
6261simplbi 501 . . . . . . . 8 (𝐵 ∈ (𝒫 𝐴 ∩ Fin) → 𝐵𝐴)
6357, 62syl 17 . . . . . . 7 (𝜑𝐵𝐴)
6463ssdifssd 4070 . . . . . 6 (𝜑 → (𝐵𝐶) ⊆ 𝐴)
6529, 64fssresd 6519 . . . . 5 (𝜑 → (𝐹 ↾ (𝐵𝐶)):(𝐵𝐶)⟶(0[,]+∞))
6633a1i 11 . . . . . 6 (𝜑 → 0 ∈ V)
6765, 60, 66fdmfifsupp 8827 . . . . 5 (𝜑 → (𝐹 ↾ (𝐵𝐶)) finSupp 0)
685, 22, 56, 60, 65, 67gsumcl 19028 . . . 4 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞))
691, 68sseldi 3913 . . 3 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ*)
70 xrge0gsumle.c . . . . . 6 (𝜑𝐶𝐵)
7158, 70ssfid 8725 . . . . 5 (𝜑𝐶 ∈ Fin)
7270, 63sstrd 3925 . . . . . 6 (𝜑𝐶𝐴)
7329, 72fssresd 6519 . . . . 5 (𝜑 → (𝐹𝐶):𝐶⟶(0[,]+∞))
7473, 71, 66fdmfifsupp 8827 . . . . 5 (𝜑 → (𝐹𝐶) finSupp 0)
755, 22, 56, 71, 73, 74gsumcl 19028 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐶)) ∈ (0[,]+∞))
761, 75sseldi 3913 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐶)) ∈ ℝ*)
77 elxrge0 12835 . . . . 5 ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞) ↔ ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ* ∧ 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
7877simprbi 500 . . . 4 ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞) → 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
7968, 78syl 17 . . 3 (𝜑 → 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
80 xleadd2a 12635 . . 3 (((0 ∈ ℝ* ∧ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ* ∧ (𝐺 Σg (𝐹𝐶)) ∈ ℝ*) ∧ 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))) → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) ≤ ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
8155, 69, 76, 79, 80syl31anc 1370 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) ≤ ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
8276xaddid1d 12624 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) = (𝐺 Σg (𝐹𝐶)))
83 ovex 7168 . . . . 5 (0[,]+∞) ∈ V
84 xrsadd 20108 . . . . . 6 +𝑒 = (+g‘ℝ*𝑠)
852, 84ressplusg 16604 . . . . 5 ((0[,]+∞) ∈ V → +𝑒 = (+g𝐺))
8683, 85ax-mp 5 . . . 4 +𝑒 = (+g𝐺)
8729, 63fssresd 6519 . . . 4 (𝜑 → (𝐹𝐵):𝐵⟶(0[,]+∞))
8887, 58, 66fdmfifsupp 8827 . . . 4 (𝜑 → (𝐹𝐵) finSupp 0)
89 disjdif 4379 . . . . 5 (𝐶 ∩ (𝐵𝐶)) = ∅
9089a1i 11 . . . 4 (𝜑 → (𝐶 ∩ (𝐵𝐶)) = ∅)
91 undif2 4383 . . . . 5 (𝐶 ∪ (𝐵𝐶)) = (𝐶𝐵)
92 ssequn1 4107 . . . . . 6 (𝐶𝐵 ↔ (𝐶𝐵) = 𝐵)
9370, 92sylib 221 . . . . 5 (𝜑 → (𝐶𝐵) = 𝐵)
9491, 93syl5req 2846 . . . 4 (𝜑𝐵 = (𝐶 ∪ (𝐵𝐶)))
955, 22, 86, 56, 57, 87, 88, 90, 94gsumsplit 19041 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐵)) = ((𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) +𝑒 (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶)))))
9670resabs1d 5849 . . . . 5 (𝜑 → ((𝐹𝐵) ↾ 𝐶) = (𝐹𝐶))
9796oveq2d 7151 . . . 4 (𝜑 → (𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) = (𝐺 Σg (𝐹𝐶)))
98 difss 4059 . . . . . 6 (𝐵𝐶) ⊆ 𝐵
99 resabs1 5848 . . . . . 6 ((𝐵𝐶) ⊆ 𝐵 → ((𝐹𝐵) ↾ (𝐵𝐶)) = (𝐹 ↾ (𝐵𝐶)))
10098, 99mp1i 13 . . . . 5 (𝜑 → ((𝐹𝐵) ↾ (𝐵𝐶)) = (𝐹 ↾ (𝐵𝐶)))
101100oveq2d 7151 . . . 4 (𝜑 → (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶))) = (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
10297, 101oveq12d 7153 . . 3 (𝜑 → ((𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) +𝑒 (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶)))) = ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
10395, 102eqtr2d 2834 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))) = (𝐺 Σg (𝐹𝐵)))
10481, 82, 1033brtr3d 5061 1 (𝜑 → (𝐺 Σg (𝐹𝐶)) ≤ (𝐺 Σg (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525   class class class wbr 5030  cmpt 5110  ran crn 5520  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  cc 10524  0cc0 10526  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663  cle 10665   +𝑒 cxad 12493  [,]cicc 12729  Basecbs 16475  s cress 16476  +gcplusg 16557  0gc0g 16705   Σg cgsu 16706  *𝑠cxrs 16765  SubMndcsubmnd 17947  CMndccmn 18898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-xadd 12496  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-tset 16576  df-ple 16577  df-ds 16579  df-0g 16707  df-gsum 16708  df-xrs 16767  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-cntz 18439  df-cmn 18900
This theorem is referenced by:  xrge0tsms  23439  xrge0tsmsd  30742
  Copyright terms: Public domain W3C validator