MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0gsumle Structured version   Visualization version   GIF version

Theorem xrge0gsumle 24698
Description: A finite sum in the nonnegative extended reals is monotonic in the support. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
xrge0gsumle.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0gsumle.a (𝜑𝐴𝑉)
xrge0gsumle.f (𝜑𝐹:𝐴⟶(0[,]+∞))
xrge0gsumle.b (𝜑𝐵 ∈ (𝒫 𝐴 ∩ Fin))
xrge0gsumle.c (𝜑𝐶𝐵)
Assertion
Ref Expression
xrge0gsumle (𝜑 → (𝐺 Σg (𝐹𝐶)) ≤ (𝐺 Σg (𝐹𝐵)))

Proof of Theorem xrge0gsumle
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 13367 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 xrge0gsumle.g . . . . . . . . . 10 𝐺 = (ℝ*𝑠s (0[,]+∞))
3 xrsbas 21271 . . . . . . . . . 10 * = (Base‘ℝ*𝑠)
42, 3ressbas2 17184 . . . . . . . . 9 ((0[,]+∞) ⊆ ℝ* → (0[,]+∞) = (Base‘𝐺))
51, 4ax-mp 5 . . . . . . . 8 (0[,]+∞) = (Base‘𝐺)
6 eqid 2729 . . . . . . . . . 10 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
76xrge0subm 21300 . . . . . . . . 9 (0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
8 xrex 12922 . . . . . . . . . . . . 13 * ∈ V
98difexi 5280 . . . . . . . . . . . 12 (ℝ* ∖ {-∞}) ∈ V
10 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
11 ge0nemnf 13109 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞)
1210, 11jca 511 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ*𝑥 ≠ -∞))
13 elxrge0 13394 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
14 eldifsn 4746 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
1512, 13, 143imtr4i 292 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
1615ssriv 3947 . . . . . . . . . . . 12 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
17 ressabs 17194 . . . . . . . . . . . 12 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
189, 16, 17mp2an 692 . . . . . . . . . . 11 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
192, 18eqtr4i 2755 . . . . . . . . . 10 𝐺 = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
206xrs10 21298 . . . . . . . . . 10 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
2119, 20subm0 18718 . . . . . . . . 9 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → 0 = (0g𝐺))
227, 21ax-mp 5 . . . . . . . 8 0 = (0g𝐺)
23 xrge0cmn 21301 . . . . . . . . . 10 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
242, 23eqeltri 2824 . . . . . . . . 9 𝐺 ∈ CMnd
2524a1i 11 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
26 elfpw 9281 . . . . . . . . . 10 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑠𝐴𝑠 ∈ Fin))
2726simprbi 496 . . . . . . . . 9 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠 ∈ Fin)
2827adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑠 ∈ Fin)
29 xrge0gsumle.f . . . . . . . . 9 (𝜑𝐹:𝐴⟶(0[,]+∞))
3026simplbi 497 . . . . . . . . 9 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠𝐴)
31 fssres 6708 . . . . . . . . 9 ((𝐹:𝐴⟶(0[,]+∞) ∧ 𝑠𝐴) → (𝐹𝑠):𝑠⟶(0[,]+∞))
3229, 30, 31syl2an 596 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠):𝑠⟶(0[,]+∞))
33 c0ex 11144 . . . . . . . . . 10 0 ∈ V
3433a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ V)
3532, 28, 34fdmfifsupp 9302 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠) finSupp 0)
365, 22, 25, 28, 32, 35gsumcl 19821 . . . . . . 7 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ (0[,]+∞))
371, 36sselid 3941 . . . . . 6 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ ℝ*)
3837fmpttd 7069 . . . . 5 (𝜑 → (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))):(𝒫 𝐴 ∩ Fin)⟶ℝ*)
3938frnd 6678 . . . 4 (𝜑 → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
40 0ss 4359 . . . . . . 7 ∅ ⊆ 𝐴
41 0fi 8990 . . . . . . 7 ∅ ∈ Fin
42 elfpw 9281 . . . . . . 7 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ⊆ 𝐴 ∧ ∅ ∈ Fin))
4340, 41, 42mpbir2an 711 . . . . . 6 ∅ ∈ (𝒫 𝐴 ∩ Fin)
44 0cn 11142 . . . . . 6 0 ∈ ℂ
45 eqid 2729 . . . . . . 7 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) = (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
46 reseq2 5934 . . . . . . . . . 10 (𝑠 = ∅ → (𝐹𝑠) = (𝐹 ↾ ∅))
47 res0 5943 . . . . . . . . . 10 (𝐹 ↾ ∅) = ∅
4846, 47eqtrdi 2780 . . . . . . . . 9 (𝑠 = ∅ → (𝐹𝑠) = ∅)
4948oveq2d 7385 . . . . . . . 8 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg ∅))
5022gsum0 18587 . . . . . . . 8 (𝐺 Σg ∅) = 0
5149, 50eqtrdi 2780 . . . . . . 7 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = 0)
5245, 51elrnmpt1s 5912 . . . . . 6 ((∅ ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 ∈ ℂ) → 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
5343, 44, 52mp2an 692 . . . . 5 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
5453a1i 11 . . . 4 (𝜑 → 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
5539, 54sseldd 3944 . . 3 (𝜑 → 0 ∈ ℝ*)
5624a1i 11 . . . . 5 (𝜑𝐺 ∈ CMnd)
57 xrge0gsumle.b . . . . . . 7 (𝜑𝐵 ∈ (𝒫 𝐴 ∩ Fin))
5857elin2d 4164 . . . . . 6 (𝜑𝐵 ∈ Fin)
59 diffi 9116 . . . . . 6 (𝐵 ∈ Fin → (𝐵𝐶) ∈ Fin)
6058, 59syl 17 . . . . 5 (𝜑 → (𝐵𝐶) ∈ Fin)
61 elfpw 9281 . . . . . . . . 9 (𝐵 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐵𝐴𝐵 ∈ Fin))
6261simplbi 497 . . . . . . . 8 (𝐵 ∈ (𝒫 𝐴 ∩ Fin) → 𝐵𝐴)
6357, 62syl 17 . . . . . . 7 (𝜑𝐵𝐴)
6463ssdifssd 4106 . . . . . 6 (𝜑 → (𝐵𝐶) ⊆ 𝐴)
6529, 64fssresd 6709 . . . . 5 (𝜑 → (𝐹 ↾ (𝐵𝐶)):(𝐵𝐶)⟶(0[,]+∞))
6633a1i 11 . . . . . 6 (𝜑 → 0 ∈ V)
6765, 60, 66fdmfifsupp 9302 . . . . 5 (𝜑 → (𝐹 ↾ (𝐵𝐶)) finSupp 0)
685, 22, 56, 60, 65, 67gsumcl 19821 . . . 4 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞))
691, 68sselid 3941 . . 3 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ*)
70 xrge0gsumle.c . . . . . 6 (𝜑𝐶𝐵)
7158, 70ssfid 9188 . . . . 5 (𝜑𝐶 ∈ Fin)
7270, 63sstrd 3954 . . . . . 6 (𝜑𝐶𝐴)
7329, 72fssresd 6709 . . . . 5 (𝜑 → (𝐹𝐶):𝐶⟶(0[,]+∞))
7473, 71, 66fdmfifsupp 9302 . . . . 5 (𝜑 → (𝐹𝐶) finSupp 0)
755, 22, 56, 71, 73, 74gsumcl 19821 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝐶)) ∈ (0[,]+∞))
761, 75sselid 3941 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐶)) ∈ ℝ*)
77 elxrge0 13394 . . . . 5 ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞) ↔ ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ* ∧ 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
7877simprbi 496 . . . 4 ((𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ (0[,]+∞) → 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
7968, 78syl 17 . . 3 (𝜑 → 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
80 xleadd2a 13190 . . 3 (((0 ∈ ℝ* ∧ (𝐺 Σg (𝐹 ↾ (𝐵𝐶))) ∈ ℝ* ∧ (𝐺 Σg (𝐹𝐶)) ∈ ℝ*) ∧ 0 ≤ (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))) → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) ≤ ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
8155, 69, 76, 79, 80syl31anc 1375 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) ≤ ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
8276xaddridd 13179 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 0) = (𝐺 Σg (𝐹𝐶)))
83 ovex 7402 . . . . 5 (0[,]+∞) ∈ V
84 xrsadd 21272 . . . . . 6 +𝑒 = (+g‘ℝ*𝑠)
852, 84ressplusg 17230 . . . . 5 ((0[,]+∞) ∈ V → +𝑒 = (+g𝐺))
8683, 85ax-mp 5 . . . 4 +𝑒 = (+g𝐺)
8729, 63fssresd 6709 . . . 4 (𝜑 → (𝐹𝐵):𝐵⟶(0[,]+∞))
8887, 58, 66fdmfifsupp 9302 . . . 4 (𝜑 → (𝐹𝐵) finSupp 0)
89 disjdif 4431 . . . . 5 (𝐶 ∩ (𝐵𝐶)) = ∅
9089a1i 11 . . . 4 (𝜑 → (𝐶 ∩ (𝐵𝐶)) = ∅)
91 undif2 4436 . . . . 5 (𝐶 ∪ (𝐵𝐶)) = (𝐶𝐵)
92 ssequn1 4145 . . . . . 6 (𝐶𝐵 ↔ (𝐶𝐵) = 𝐵)
9370, 92sylib 218 . . . . 5 (𝜑 → (𝐶𝐵) = 𝐵)
9491, 93eqtr2id 2777 . . . 4 (𝜑𝐵 = (𝐶 ∪ (𝐵𝐶)))
955, 22, 86, 56, 57, 87, 88, 90, 94gsumsplit 19834 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐵)) = ((𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) +𝑒 (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶)))))
9670resabs1d 5968 . . . . 5 (𝜑 → ((𝐹𝐵) ↾ 𝐶) = (𝐹𝐶))
9796oveq2d 7385 . . . 4 (𝜑 → (𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) = (𝐺 Σg (𝐹𝐶)))
98 difss 4095 . . . . . 6 (𝐵𝐶) ⊆ 𝐵
99 resabs1 5966 . . . . . 6 ((𝐵𝐶) ⊆ 𝐵 → ((𝐹𝐵) ↾ (𝐵𝐶)) = (𝐹 ↾ (𝐵𝐶)))
10098, 99mp1i 13 . . . . 5 (𝜑 → ((𝐹𝐵) ↾ (𝐵𝐶)) = (𝐹 ↾ (𝐵𝐶)))
101100oveq2d 7385 . . . 4 (𝜑 → (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶))) = (𝐺 Σg (𝐹 ↾ (𝐵𝐶))))
10297, 101oveq12d 7387 . . 3 (𝜑 → ((𝐺 Σg ((𝐹𝐵) ↾ 𝐶)) +𝑒 (𝐺 Σg ((𝐹𝐵) ↾ (𝐵𝐶)))) = ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))))
10395, 102eqtr2d 2765 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐶)) +𝑒 (𝐺 Σg (𝐹 ↾ (𝐵𝐶)))) = (𝐺 Σg (𝐹𝐵)))
10481, 82, 1033brtr3d 5133 1 (𝜑 → (𝐺 Σg (𝐹𝐶)) ≤ (𝐺 Σg (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585   class class class wbr 5102  cmpt 5183  ran crn 5632  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  0cc0 11044  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183  cle 11185   +𝑒 cxad 13046  [,]cicc 13285  Basecbs 17155  s cress 17176  +gcplusg 17196  0gc0g 17378   Σg cgsu 17379  *𝑠cxrs 17439  SubMndcsubmnd 18685  CMndccmn 19686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-xadd 13049  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-gsum 17381  df-xrs 17441  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-cntz 19225  df-cmn 19688
This theorem is referenced by:  xrge0tsms  24699  xrge0tsmsd  32975
  Copyright terms: Public domain W3C validator