MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmetutop Structured version   Visualization version   GIF version

Theorem psmetutop 23629
Description: The topology induced by a uniform structure generated by a metric 𝐷 is generated by that metric's open balls. (Contributed by Thierry Arnoux, 6-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
psmetutop ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (topGen‘ran (ball‘𝐷)))

Proof of Theorem psmetutop
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metuust 23622 . . . . . . . . . . . 12 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋))
2 utopval 23292 . . . . . . . . . . . 12 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (unifTop‘(metUnif‘𝐷)) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎})
31, 2syl 17 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎})
43eleq2d 2824 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ 𝑎 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎}))
5 rabid 3304 . . . . . . . . . 10 (𝑎 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎} ↔ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
64, 5bitrdi 286 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)))
76biimpa 476 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
87simpld 494 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ∈ 𝒫 𝑋)
98elpwid 4541 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎𝑋)
10 unirnblps 23480 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) = 𝑋)
1110ad2antlr 723 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ran (ball‘𝐷) = 𝑋)
129, 11sseqtrrd 3958 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ran (ball‘𝐷))
13 simpr 484 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → (𝑣 “ {𝑥}) ⊆ 𝑎)
14 simp-5r 782 . . . . . . . . 9 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝐷 ∈ (PsMet‘𝑋))
15 simplr 765 . . . . . . . . 9 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑣 ∈ (metUnif‘𝐷))
169ad3antrrr 726 . . . . . . . . . 10 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑎𝑋)
17 simpllr 772 . . . . . . . . . 10 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑥𝑎)
1816, 17sseldd 3918 . . . . . . . . 9 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑥𝑋)
19 metustbl 23628 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷) ∧ 𝑥𝑋) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})))
2014, 15, 18, 19syl3anc 1369 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})))
21 sstr 3925 . . . . . . . . . . 11 ((𝑏 ⊆ (𝑣 “ {𝑥}) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑏𝑎)
2221expcom 413 . . . . . . . . . 10 ((𝑣 “ {𝑥}) ⊆ 𝑎 → (𝑏 ⊆ (𝑣 “ {𝑥}) → 𝑏𝑎))
2322anim2d 611 . . . . . . . . 9 ((𝑣 “ {𝑥}) ⊆ 𝑎 → ((𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})) → (𝑥𝑏𝑏𝑎)))
2423reximdv 3201 . . . . . . . 8 ((𝑣 “ {𝑥}) ⊆ 𝑎 → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎)))
2513, 20, 24sylc 65 . . . . . . 7 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
267simprd 495 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
2726r19.21bi 3132 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
2825, 27r19.29a 3217 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
2928ralrimiva 3107 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
3012, 29jca 511 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎)))
31 fvex 6769 . . . . . 6 (ball‘𝐷) ∈ V
3231rnex 7733 . . . . 5 ran (ball‘𝐷) ∈ V
33 eltg2 22016 . . . . 5 (ran (ball‘𝐷) ∈ V → (𝑎 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))))
3432, 33mp1i 13 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))))
3530, 34mpbird 256 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ∈ (topGen‘ran (ball‘𝐷)))
3632, 33mp1i 13 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))))
3736biimpa 476 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎)))
3837simpld 494 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ran (ball‘𝐷))
3910ad2antlr 723 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ran (ball‘𝐷) = 𝑋)
4038, 39sseqtrd 3957 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎𝑋)
41 elpwg 4533 . . . . . . 7 (𝑎 ∈ (topGen‘ran (ball‘𝐷)) → (𝑎 ∈ 𝒫 𝑋𝑎𝑋))
4241adantl 481 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ∈ 𝒫 𝑋𝑎𝑋))
4340, 42mpbird 256 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ∈ 𝒫 𝑋)
44 simpllr 772 . . . . . . . . 9 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → 𝐷 ∈ (PsMet‘𝑋))
4540sselda 3917 . . . . . . . . 9 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → 𝑥𝑋)
4637simprd 495 . . . . . . . . . . 11 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
4746r19.21bi 3132 . . . . . . . . . 10 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
48 blssexps 23487 . . . . . . . . . . 11 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎) ↔ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎))
4944, 45, 48syl2anc 583 . . . . . . . . . 10 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎) ↔ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎))
5047, 49mpbid 231 . . . . . . . . 9 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎)
51 blval2 23624 . . . . . . . . . . . . 13 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑑 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑑) = ((𝐷 “ (0[,)𝑑)) “ {𝑥}))
52513expa 1116 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) ∧ 𝑑 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑑) = ((𝐷 “ (0[,)𝑑)) “ {𝑥}))
5352sseq1d 3948 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) ∧ 𝑑 ∈ ℝ+) → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑎 ↔ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
5453rexbidva 3224 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
5554biimpa 476 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) ∧ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎) → ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎)
5644, 45, 50, 55syl21anc 834 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎)
57 cnvexg 7745 . . . . . . . . . . 11 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
58 imaexg 7736 . . . . . . . . . . 11 (𝐷 ∈ V → (𝐷 “ (0[,)𝑑)) ∈ V)
5957, 58syl 17 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 “ (0[,)𝑑)) ∈ V)
6059ralrimivw 3108 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ∈ V)
61 eqid 2738 . . . . . . . . . 10 (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) = (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))
62 imaeq1 5953 . . . . . . . . . . 11 (𝑣 = (𝐷 “ (0[,)𝑑)) → (𝑣 “ {𝑥}) = ((𝐷 “ (0[,)𝑑)) “ {𝑥}))
6362sseq1d 3948 . . . . . . . . . 10 (𝑣 = (𝐷 “ (0[,)𝑑)) → ((𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
6461, 63rexrnmptw 6953 . . . . . . . . 9 (∀𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ∈ V → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
6544, 60, 643syl 18 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
6656, 65mpbird 256 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎)
67 oveq2 7263 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 → (0[,)𝑑) = (0[,)𝑒))
6867imaeq2d 5958 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑒)))
6968cbvmptv 5183 . . . . . . . . . . . . 13 (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) = (𝑒 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑒)))
7069rneqi 5835 . . . . . . . . . . . 12 ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) = ran (𝑒 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑒)))
7170metustfbas 23619 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ∈ (fBas‘(𝑋 × 𝑋)))
72 ssfg 22931 . . . . . . . . . . 11 (ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ∈ (fBas‘(𝑋 × 𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
7371, 72syl 17 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
74 metuval 23611 . . . . . . . . . . 11 (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
7574adantl 481 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
7673, 75sseqtrrd 3958 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ (metUnif‘𝐷))
77 ssrexv 3984 . . . . . . . . 9 (ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ (metUnif‘𝐷) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
7876, 77syl 17 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
7978ad2antrr 722 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
8066, 79mpd 15 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
8180ralrimiva 3107 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
8243, 81jca 511 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
836biimpar 477 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)) → 𝑎 ∈ (unifTop‘(metUnif‘𝐷)))
8482, 83syldan 590 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ∈ (unifTop‘(metUnif‘𝐷)))
8535, 84impbida 797 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ 𝑎 ∈ (topGen‘ran (ball‘𝐷))))
8685eqrdv 2736 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (topGen‘ran (ball‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836  cmpt 5153   × cxp 5578  ccnv 5579  ran crn 5581  cima 5583  cfv 6418  (class class class)co 7255  0cc0 10802  +crp 12659  [,)cico 13010  topGenctg 17065  PsMetcpsmet 20494  ballcbl 20497  fBascfbas 20498  filGencfg 20499  metUnifcmetu 20501  UnifOncust 23259  unifTopcutop 23290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-topgen 17071  df-psmet 20502  df-bl 20505  df-fbas 20507  df-fg 20508  df-metu 20509  df-fil 22905  df-ust 23260  df-utop 23291
This theorem is referenced by:  xmetutop  23630
  Copyright terms: Public domain W3C validator