MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmetutop Structured version   Visualization version   GIF version

Theorem psmetutop 24580
Description: The topology induced by a uniform structure generated by a metric 𝐷 is generated by that metric's open balls. (Contributed by Thierry Arnoux, 6-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
psmetutop ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (topGen‘ran (ball‘𝐷)))

Proof of Theorem psmetutop
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metuust 24573 . . . . . . . . . . . 12 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋))
2 utopval 24241 . . . . . . . . . . . 12 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (unifTop‘(metUnif‘𝐷)) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎})
31, 2syl 17 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎})
43eleq2d 2827 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ 𝑎 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎}))
5 rabid 3458 . . . . . . . . . 10 (𝑎 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎} ↔ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
64, 5bitrdi 287 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)))
76biimpa 476 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
87simpld 494 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ∈ 𝒫 𝑋)
98elpwid 4609 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎𝑋)
10 unirnblps 24429 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) = 𝑋)
1110ad2antlr 727 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ran (ball‘𝐷) = 𝑋)
129, 11sseqtrrd 4021 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ran (ball‘𝐷))
13 simpr 484 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → (𝑣 “ {𝑥}) ⊆ 𝑎)
14 simp-5r 786 . . . . . . . . 9 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝐷 ∈ (PsMet‘𝑋))
15 simplr 769 . . . . . . . . 9 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑣 ∈ (metUnif‘𝐷))
169ad3antrrr 730 . . . . . . . . . 10 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑎𝑋)
17 simpllr 776 . . . . . . . . . 10 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑥𝑎)
1816, 17sseldd 3984 . . . . . . . . 9 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑥𝑋)
19 metustbl 24579 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷) ∧ 𝑥𝑋) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})))
2014, 15, 18, 19syl3anc 1373 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})))
21 sstr 3992 . . . . . . . . . . 11 ((𝑏 ⊆ (𝑣 “ {𝑥}) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑏𝑎)
2221expcom 413 . . . . . . . . . 10 ((𝑣 “ {𝑥}) ⊆ 𝑎 → (𝑏 ⊆ (𝑣 “ {𝑥}) → 𝑏𝑎))
2322anim2d 612 . . . . . . . . 9 ((𝑣 “ {𝑥}) ⊆ 𝑎 → ((𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})) → (𝑥𝑏𝑏𝑎)))
2423reximdv 3170 . . . . . . . 8 ((𝑣 “ {𝑥}) ⊆ 𝑎 → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎)))
2513, 20, 24sylc 65 . . . . . . 7 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
267simprd 495 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
2726r19.21bi 3251 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
2825, 27r19.29a 3162 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
2928ralrimiva 3146 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
3012, 29jca 511 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎)))
31 fvex 6919 . . . . . 6 (ball‘𝐷) ∈ V
3231rnex 7932 . . . . 5 ran (ball‘𝐷) ∈ V
33 eltg2 22965 . . . . 5 (ran (ball‘𝐷) ∈ V → (𝑎 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))))
3432, 33mp1i 13 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))))
3530, 34mpbird 257 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ∈ (topGen‘ran (ball‘𝐷)))
3632, 33mp1i 13 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))))
3736biimpa 476 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎)))
3837simpld 494 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ran (ball‘𝐷))
3910ad2antlr 727 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ran (ball‘𝐷) = 𝑋)
4038, 39sseqtrd 4020 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎𝑋)
41 elpwg 4603 . . . . . . 7 (𝑎 ∈ (topGen‘ran (ball‘𝐷)) → (𝑎 ∈ 𝒫 𝑋𝑎𝑋))
4241adantl 481 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ∈ 𝒫 𝑋𝑎𝑋))
4340, 42mpbird 257 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ∈ 𝒫 𝑋)
44 simpllr 776 . . . . . . . . 9 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → 𝐷 ∈ (PsMet‘𝑋))
4540sselda 3983 . . . . . . . . 9 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → 𝑥𝑋)
4637simprd 495 . . . . . . . . . . 11 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
4746r19.21bi 3251 . . . . . . . . . 10 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
48 blssexps 24436 . . . . . . . . . . 11 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎) ↔ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎))
4944, 45, 48syl2anc 584 . . . . . . . . . 10 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎) ↔ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎))
5047, 49mpbid 232 . . . . . . . . 9 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎)
51 blval2 24575 . . . . . . . . . . . . 13 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑑 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑑) = ((𝐷 “ (0[,)𝑑)) “ {𝑥}))
52513expa 1119 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) ∧ 𝑑 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑑) = ((𝐷 “ (0[,)𝑑)) “ {𝑥}))
5352sseq1d 4015 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) ∧ 𝑑 ∈ ℝ+) → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑎 ↔ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
5453rexbidva 3177 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
5554biimpa 476 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) ∧ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎) → ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎)
5644, 45, 50, 55syl21anc 838 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎)
57 cnvexg 7946 . . . . . . . . . . 11 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
58 imaexg 7935 . . . . . . . . . . 11 (𝐷 ∈ V → (𝐷 “ (0[,)𝑑)) ∈ V)
5957, 58syl 17 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 “ (0[,)𝑑)) ∈ V)
6059ralrimivw 3150 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ∈ V)
61 eqid 2737 . . . . . . . . . 10 (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) = (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))
62 imaeq1 6073 . . . . . . . . . . 11 (𝑣 = (𝐷 “ (0[,)𝑑)) → (𝑣 “ {𝑥}) = ((𝐷 “ (0[,)𝑑)) “ {𝑥}))
6362sseq1d 4015 . . . . . . . . . 10 (𝑣 = (𝐷 “ (0[,)𝑑)) → ((𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
6461, 63rexrnmptw 7115 . . . . . . . . 9 (∀𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ∈ V → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
6544, 60, 643syl 18 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
6656, 65mpbird 257 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎)
67 oveq2 7439 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 → (0[,)𝑑) = (0[,)𝑒))
6867imaeq2d 6078 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑒)))
6968cbvmptv 5255 . . . . . . . . . . . . 13 (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) = (𝑒 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑒)))
7069rneqi 5948 . . . . . . . . . . . 12 ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) = ran (𝑒 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑒)))
7170metustfbas 24570 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ∈ (fBas‘(𝑋 × 𝑋)))
72 ssfg 23880 . . . . . . . . . . 11 (ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ∈ (fBas‘(𝑋 × 𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
7371, 72syl 17 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
74 metuval 24562 . . . . . . . . . . 11 (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
7574adantl 481 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
7673, 75sseqtrrd 4021 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ (metUnif‘𝐷))
77 ssrexv 4053 . . . . . . . . 9 (ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ (metUnif‘𝐷) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
7876, 77syl 17 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
7978ad2antrr 726 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
8066, 79mpd 15 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
8180ralrimiva 3146 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
8243, 81jca 511 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
836biimpar 477 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)) → 𝑎 ∈ (unifTop‘(metUnif‘𝐷)))
8482, 83syldan 591 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ∈ (unifTop‘(metUnif‘𝐷)))
8535, 84impbida 801 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ 𝑎 ∈ (topGen‘ran (ball‘𝐷))))
8685eqrdv 2735 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (topGen‘ran (ball‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626   cuni 4907  cmpt 5225   × cxp 5683  ccnv 5684  ran crn 5686  cima 5688  cfv 6561  (class class class)co 7431  0cc0 11155  +crp 13034  [,)cico 13389  topGenctg 17482  PsMetcpsmet 21348  ballcbl 21351  fBascfbas 21352  filGencfg 21353  metUnifcmetu 21355  UnifOncust 24208  unifTopcutop 24239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-topgen 17488  df-psmet 21356  df-bl 21359  df-fbas 21361  df-fg 21362  df-metu 21363  df-fil 23854  df-ust 24209  df-utop 24240
This theorem is referenced by:  xmetutop  24581
  Copyright terms: Public domain W3C validator