MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmetutop Structured version   Visualization version   GIF version

Theorem psmetutop 24601
Description: The topology induced by a uniform structure generated by a metric 𝐷 is generated by that metric's open balls. (Contributed by Thierry Arnoux, 6-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
psmetutop ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (topGen‘ran (ball‘𝐷)))

Proof of Theorem psmetutop
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metuust 24594 . . . . . . . . . . . 12 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋))
2 utopval 24262 . . . . . . . . . . . 12 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (unifTop‘(metUnif‘𝐷)) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎})
31, 2syl 17 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎})
43eleq2d 2830 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ 𝑎 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎}))
5 rabid 3465 . . . . . . . . . 10 (𝑎 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎} ↔ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
64, 5bitrdi 287 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)))
76biimpa 476 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
87simpld 494 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ∈ 𝒫 𝑋)
98elpwid 4631 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎𝑋)
10 unirnblps 24450 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) = 𝑋)
1110ad2antlr 726 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ran (ball‘𝐷) = 𝑋)
129, 11sseqtrrd 4050 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ran (ball‘𝐷))
13 simpr 484 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → (𝑣 “ {𝑥}) ⊆ 𝑎)
14 simp-5r 785 . . . . . . . . 9 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝐷 ∈ (PsMet‘𝑋))
15 simplr 768 . . . . . . . . 9 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑣 ∈ (metUnif‘𝐷))
169ad3antrrr 729 . . . . . . . . . 10 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑎𝑋)
17 simpllr 775 . . . . . . . . . 10 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑥𝑎)
1816, 17sseldd 4009 . . . . . . . . 9 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑥𝑋)
19 metustbl 24600 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷) ∧ 𝑥𝑋) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})))
2014, 15, 18, 19syl3anc 1371 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})))
21 sstr 4017 . . . . . . . . . . 11 ((𝑏 ⊆ (𝑣 “ {𝑥}) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑏𝑎)
2221expcom 413 . . . . . . . . . 10 ((𝑣 “ {𝑥}) ⊆ 𝑎 → (𝑏 ⊆ (𝑣 “ {𝑥}) → 𝑏𝑎))
2322anim2d 611 . . . . . . . . 9 ((𝑣 “ {𝑥}) ⊆ 𝑎 → ((𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})) → (𝑥𝑏𝑏𝑎)))
2423reximdv 3176 . . . . . . . 8 ((𝑣 “ {𝑥}) ⊆ 𝑎 → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎)))
2513, 20, 24sylc 65 . . . . . . 7 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
267simprd 495 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
2726r19.21bi 3257 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
2825, 27r19.29a 3168 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
2928ralrimiva 3152 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
3012, 29jca 511 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎)))
31 fvex 6933 . . . . . 6 (ball‘𝐷) ∈ V
3231rnex 7950 . . . . 5 ran (ball‘𝐷) ∈ V
33 eltg2 22986 . . . . 5 (ran (ball‘𝐷) ∈ V → (𝑎 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))))
3432, 33mp1i 13 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))))
3530, 34mpbird 257 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ∈ (topGen‘ran (ball‘𝐷)))
3632, 33mp1i 13 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))))
3736biimpa 476 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎)))
3837simpld 494 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ran (ball‘𝐷))
3910ad2antlr 726 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ran (ball‘𝐷) = 𝑋)
4038, 39sseqtrd 4049 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎𝑋)
41 elpwg 4625 . . . . . . 7 (𝑎 ∈ (topGen‘ran (ball‘𝐷)) → (𝑎 ∈ 𝒫 𝑋𝑎𝑋))
4241adantl 481 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ∈ 𝒫 𝑋𝑎𝑋))
4340, 42mpbird 257 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ∈ 𝒫 𝑋)
44 simpllr 775 . . . . . . . . 9 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → 𝐷 ∈ (PsMet‘𝑋))
4540sselda 4008 . . . . . . . . 9 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → 𝑥𝑋)
4637simprd 495 . . . . . . . . . . 11 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
4746r19.21bi 3257 . . . . . . . . . 10 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
48 blssexps 24457 . . . . . . . . . . 11 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎) ↔ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎))
4944, 45, 48syl2anc 583 . . . . . . . . . 10 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎) ↔ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎))
5047, 49mpbid 232 . . . . . . . . 9 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎)
51 blval2 24596 . . . . . . . . . . . . 13 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑑 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑑) = ((𝐷 “ (0[,)𝑑)) “ {𝑥}))
52513expa 1118 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) ∧ 𝑑 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑑) = ((𝐷 “ (0[,)𝑑)) “ {𝑥}))
5352sseq1d 4040 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) ∧ 𝑑 ∈ ℝ+) → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑎 ↔ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
5453rexbidva 3183 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
5554biimpa 476 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) ∧ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎) → ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎)
5644, 45, 50, 55syl21anc 837 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎)
57 cnvexg 7964 . . . . . . . . . . 11 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
58 imaexg 7953 . . . . . . . . . . 11 (𝐷 ∈ V → (𝐷 “ (0[,)𝑑)) ∈ V)
5957, 58syl 17 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 “ (0[,)𝑑)) ∈ V)
6059ralrimivw 3156 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ∈ V)
61 eqid 2740 . . . . . . . . . 10 (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) = (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))
62 imaeq1 6084 . . . . . . . . . . 11 (𝑣 = (𝐷 “ (0[,)𝑑)) → (𝑣 “ {𝑥}) = ((𝐷 “ (0[,)𝑑)) “ {𝑥}))
6362sseq1d 4040 . . . . . . . . . 10 (𝑣 = (𝐷 “ (0[,)𝑑)) → ((𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
6461, 63rexrnmptw 7129 . . . . . . . . 9 (∀𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ∈ V → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
6544, 60, 643syl 18 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
6656, 65mpbird 257 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎)
67 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 → (0[,)𝑑) = (0[,)𝑒))
6867imaeq2d 6089 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑒)))
6968cbvmptv 5279 . . . . . . . . . . . . 13 (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) = (𝑒 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑒)))
7069rneqi 5962 . . . . . . . . . . . 12 ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) = ran (𝑒 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑒)))
7170metustfbas 24591 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ∈ (fBas‘(𝑋 × 𝑋)))
72 ssfg 23901 . . . . . . . . . . 11 (ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ∈ (fBas‘(𝑋 × 𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
7371, 72syl 17 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
74 metuval 24583 . . . . . . . . . . 11 (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
7574adantl 481 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
7673, 75sseqtrrd 4050 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ (metUnif‘𝐷))
77 ssrexv 4078 . . . . . . . . 9 (ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ (metUnif‘𝐷) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
7876, 77syl 17 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
7978ad2antrr 725 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
8066, 79mpd 15 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
8180ralrimiva 3152 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
8243, 81jca 511 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
836biimpar 477 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)) → 𝑎 ∈ (unifTop‘(metUnif‘𝐷)))
8482, 83syldan 590 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ∈ (unifTop‘(metUnif‘𝐷)))
8535, 84impbida 800 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ 𝑎 ∈ (topGen‘ran (ball‘𝐷))))
8685eqrdv 2738 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (topGen‘ran (ball‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931  cmpt 5249   × cxp 5698  ccnv 5699  ran crn 5701  cima 5703  cfv 6573  (class class class)co 7448  0cc0 11184  +crp 13057  [,)cico 13409  topGenctg 17497  PsMetcpsmet 21371  ballcbl 21374  fBascfbas 21375  filGencfg 21376  metUnifcmetu 21378  UnifOncust 24229  unifTopcutop 24260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-topgen 17503  df-psmet 21379  df-bl 21382  df-fbas 21384  df-fg 21385  df-metu 21386  df-fil 23875  df-ust 24230  df-utop 24261
This theorem is referenced by:  xmetutop  24602
  Copyright terms: Public domain W3C validator