Step | Hyp | Ref
| Expression |
1 | | metuust 23458 |
. . . . . . . . . . . 12
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋)) |
2 | | utopval 23130 |
. . . . . . . . . . . 12
⊢
((metUnif‘𝐷)
∈ (UnifOn‘𝑋)
→ (unifTop‘(metUnif‘𝐷)) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎}) |
3 | 1, 2 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) →
(unifTop‘(metUnif‘𝐷)) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎}) |
4 | 3 | eleq2d 2823 |
. . . . . . . . . 10
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ 𝑎 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎})) |
5 | | rabid 3290 |
. . . . . . . . . 10
⊢ (𝑎 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎} ↔ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)) |
6 | 4, 5 | bitrdi 290 |
. . . . . . . . 9
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))) |
7 | 6 | biimpa 480 |
. . . . . . . 8
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)) |
8 | 7 | simpld 498 |
. . . . . . 7
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ∈ 𝒫 𝑋) |
9 | 8 | elpwid 4524 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ⊆ 𝑋) |
10 | | unirnblps 23317 |
. . . . . . 7
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) |
11 | 10 | ad2antlr 727 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ∪ ran (ball‘𝐷) = 𝑋) |
12 | 9, 11 | sseqtrrd 3942 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ⊆ ∪ ran
(ball‘𝐷)) |
13 | | simpr 488 |
. . . . . . . 8
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑎 ∈
(unifTop‘(metUnif‘𝐷))) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → (𝑣 “ {𝑥}) ⊆ 𝑎) |
14 | | simp-5r 786 |
. . . . . . . . 9
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑎 ∈
(unifTop‘(metUnif‘𝐷))) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝐷 ∈ (PsMet‘𝑋)) |
15 | | simplr 769 |
. . . . . . . . 9
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑎 ∈
(unifTop‘(metUnif‘𝐷))) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑣 ∈ (metUnif‘𝐷)) |
16 | 9 | ad3antrrr 730 |
. . . . . . . . . 10
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑎 ∈
(unifTop‘(metUnif‘𝐷))) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑎 ⊆ 𝑋) |
17 | | simpllr 776 |
. . . . . . . . . 10
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑎 ∈
(unifTop‘(metUnif‘𝐷))) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑥 ∈ 𝑎) |
18 | 16, 17 | sseldd 3902 |
. . . . . . . . 9
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑎 ∈
(unifTop‘(metUnif‘𝐷))) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑥 ∈ 𝑋) |
19 | | metustbl 23464 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷) ∧ 𝑥 ∈ 𝑋) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑣 “ {𝑥}))) |
20 | 14, 15, 18, 19 | syl3anc 1373 |
. . . . . . . 8
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑎 ∈
(unifTop‘(metUnif‘𝐷))) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑣 “ {𝑥}))) |
21 | | sstr 3909 |
. . . . . . . . . . 11
⊢ ((𝑏 ⊆ (𝑣 “ {𝑥}) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑏 ⊆ 𝑎) |
22 | 21 | expcom 417 |
. . . . . . . . . 10
⊢ ((𝑣 “ {𝑥}) ⊆ 𝑎 → (𝑏 ⊆ (𝑣 “ {𝑥}) → 𝑏 ⊆ 𝑎)) |
23 | 22 | anim2d 615 |
. . . . . . . . 9
⊢ ((𝑣 “ {𝑥}) ⊆ 𝑎 → ((𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑣 “ {𝑥})) → (𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎))) |
24 | 23 | reximdv 3192 |
. . . . . . . 8
⊢ ((𝑣 “ {𝑥}) ⊆ 𝑎 → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ (𝑣 “ {𝑥})) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎))) |
25 | 13, 20, 24 | sylc 65 |
. . . . . . 7
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝑎 ∈
(unifTop‘(metUnif‘𝐷))) ∧ 𝑥 ∈ 𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎)) |
26 | 7 | simprd 499 |
. . . . . . . 8
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎) |
27 | 26 | r19.21bi 3130 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥 ∈ 𝑎) → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎) |
28 | 25, 27 | r19.29a 3208 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥 ∈ 𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎)) |
29 | 28 | ralrimiva 3105 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ∀𝑥 ∈ 𝑎 ∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎)) |
30 | 12, 29 | jca 515 |
. . . 4
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ⊆ ∪ ran
(ball‘𝐷) ∧
∀𝑥 ∈ 𝑎 ∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎))) |
31 | | fvex 6730 |
. . . . . 6
⊢
(ball‘𝐷)
∈ V |
32 | 31 | rnex 7690 |
. . . . 5
⊢ ran
(ball‘𝐷) ∈
V |
33 | | eltg2 21855 |
. . . . 5
⊢ (ran
(ball‘𝐷) ∈ V
→ (𝑎 ∈
(topGen‘ran (ball‘𝐷)) ↔ (𝑎 ⊆ ∪ ran
(ball‘𝐷) ∧
∀𝑥 ∈ 𝑎 ∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎)))) |
34 | 32, 33 | mp1i 13 |
. . . 4
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝑎 ⊆ ∪ ran
(ball‘𝐷) ∧
∀𝑥 ∈ 𝑎 ∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎)))) |
35 | 30, 34 | mpbird 260 |
. . 3
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ∈ (topGen‘ran (ball‘𝐷))) |
36 | 32, 33 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝑎 ⊆ ∪ ran
(ball‘𝐷) ∧
∀𝑥 ∈ 𝑎 ∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎)))) |
37 | 36 | biimpa 480 |
. . . . . . . 8
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ⊆ ∪ ran
(ball‘𝐷) ∧
∀𝑥 ∈ 𝑎 ∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎))) |
38 | 37 | simpld 498 |
. . . . . . 7
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ⊆ ∪ ran
(ball‘𝐷)) |
39 | 10 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ∪ ran (ball‘𝐷) = 𝑋) |
40 | 38, 39 | sseqtrd 3941 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ⊆ 𝑋) |
41 | | elpwg 4516 |
. . . . . . 7
⊢ (𝑎 ∈ (topGen‘ran
(ball‘𝐷)) →
(𝑎 ∈ 𝒫 𝑋 ↔ 𝑎 ⊆ 𝑋)) |
42 | 41 | adantl 485 |
. . . . . 6
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ∈ 𝒫 𝑋 ↔ 𝑎 ⊆ 𝑋)) |
43 | 40, 42 | mpbird 260 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ∈ 𝒫 𝑋) |
44 | | simpllr 776 |
. . . . . . . . 9
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥 ∈ 𝑎) → 𝐷 ∈ (PsMet‘𝑋)) |
45 | 40 | sselda 3901 |
. . . . . . . . 9
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥 ∈ 𝑎) → 𝑥 ∈ 𝑋) |
46 | 37 | simprd 499 |
. . . . . . . . . . 11
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ∀𝑥 ∈ 𝑎 ∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎)) |
47 | 46 | r19.21bi 3130 |
. . . . . . . . . 10
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥 ∈ 𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎)) |
48 | | blssexps 23324 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎) ↔ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎)) |
49 | 44, 45, 48 | syl2anc 587 |
. . . . . . . . . 10
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥 ∈ 𝑎) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑎) ↔ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎)) |
50 | 47, 49 | mpbid 235 |
. . . . . . . . 9
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥 ∈ 𝑎) → ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎) |
51 | | blval2 23460 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑑 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑑) = ((◡𝐷 “ (0[,)𝑑)) “ {𝑥})) |
52 | 51 | 3expa 1120 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑑 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑑) = ((◡𝐷 “ (0[,)𝑑)) “ {𝑥})) |
53 | 52 | sseq1d 3932 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑑 ∈ ℝ+) → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑎 ↔ ((◡𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎)) |
54 | 53 | rexbidva 3215 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋) → (∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((◡𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎)) |
55 | 54 | biimpa 480 |
. . . . . . . . 9
⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎) → ∃𝑑 ∈ ℝ+ ((◡𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎) |
56 | 44, 45, 50, 55 | syl21anc 838 |
. . . . . . . 8
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥 ∈ 𝑎) → ∃𝑑 ∈ ℝ+ ((◡𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎) |
57 | | cnvexg 7702 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) |
58 | | imaexg 7693 |
. . . . . . . . . . 11
⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑑)) ∈ V) |
59 | 57, 58 | syl 17 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (PsMet‘𝑋) → (◡𝐷 “ (0[,)𝑑)) ∈ V) |
60 | 59 | ralrimivw 3106 |
. . . . . . . . 9
⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑑 ∈ ℝ+
(◡𝐷 “ (0[,)𝑑)) ∈ V) |
61 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑑 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑑))) = (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑))) |
62 | | imaeq1 5924 |
. . . . . . . . . . 11
⊢ (𝑣 = (◡𝐷 “ (0[,)𝑑)) → (𝑣 “ {𝑥}) = ((◡𝐷 “ (0[,)𝑑)) “ {𝑥})) |
63 | 62 | sseq1d 3932 |
. . . . . . . . . 10
⊢ (𝑣 = (◡𝐷 “ (0[,)𝑑)) → ((𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ((◡𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎)) |
64 | 61, 63 | rexrnmptw 6914 |
. . . . . . . . 9
⊢
(∀𝑑 ∈
ℝ+ (◡𝐷 “ (0[,)𝑑)) ∈ V → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((◡𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎)) |
65 | 44, 60, 64 | 3syl 18 |
. . . . . . . 8
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥 ∈ 𝑎) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((◡𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎)) |
66 | 56, 65 | mpbird 260 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥 ∈ 𝑎) → ∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎) |
67 | | oveq2 7221 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝑒 → (0[,)𝑑) = (0[,)𝑒)) |
68 | 67 | imaeq2d 5929 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 𝑒 → (◡𝐷 “ (0[,)𝑑)) = (◡𝐷 “ (0[,)𝑒))) |
69 | 68 | cbvmptv 5158 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑑))) = (𝑒 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑒))) |
70 | 69 | rneqi 5806 |
. . . . . . . . . . . 12
⊢ ran
(𝑑 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑑))) = ran (𝑒 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑒))) |
71 | 70 | metustfbas 23455 |
. . . . . . . . . . 11
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑑))) ∈ (fBas‘(𝑋 × 𝑋))) |
72 | | ssfg 22769 |
. . . . . . . . . . 11
⊢ (ran
(𝑑 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑑))) ∈ (fBas‘(𝑋 × 𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑))) ⊆ ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑))))) |
73 | 71, 72 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑑))) ⊆ ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑))))) |
74 | | metuval 23447 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑))))) |
75 | 74 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑))))) |
76 | 73, 75 | sseqtrrd 3942 |
. . . . . . . . 9
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑑))) ⊆ (metUnif‘𝐷)) |
77 | | ssrexv 3968 |
. . . . . . . . 9
⊢ (ran
(𝑑 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑑))) ⊆ (metUnif‘𝐷) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)) |
78 | 76, 77 | syl 17 |
. . . . . . . 8
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)) |
79 | 78 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥 ∈ 𝑎) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)) |
80 | 66, 79 | mpd 15 |
. . . . . 6
⊢ ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥 ∈ 𝑎) → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎) |
81 | 80 | ralrimiva 3105 |
. . . . 5
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎) |
82 | 43, 81 | jca 515 |
. . . 4
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)) |
83 | 6 | biimpar 481 |
. . . 4
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)) → 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) |
84 | 82, 83 | syldan 594 |
. . 3
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) |
85 | 35, 84 | impbida 801 |
. 2
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ 𝑎 ∈ (topGen‘ran (ball‘𝐷)))) |
86 | 85 | eqrdv 2735 |
1
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) →
(unifTop‘(metUnif‘𝐷)) = (topGen‘ran (ball‘𝐷))) |