Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gch-kn Structured version   Visualization version   GIF version

Theorem gch-kn 10076
 Description: The equivalence of two versions of the Generalized Continuum Hypothesis. The right-hand side is the standard version in the literature. The left-hand side is a version devised by Kannan Nambiar, which he calls the Axiom of Combinatorial Sets. For the notation and motivation behind this axiom, see his paper, "Derivation of Continuum Hypothesis from Axiom of Combinatorial Sets", available at http://www.e-atheneum.net/science/derivation_ch.pdf. The equivalence of the two sides provides a negative answer to Open Problem 2 in http://www.e-atheneum.net/science/open_problem_print.pdf. The key idea in the proof below is to equate both sides of alephexp2 9980 to the successor aleph using enen2 8634. (Contributed by NM, 1-Oct-2004.)
Assertion
Ref Expression
gch-kn (𝐴 ∈ On → ((ℵ‘suc 𝐴) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} ↔ (ℵ‘suc 𝐴) ≈ (2om (ℵ‘𝐴))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem gch-kn
StepHypRef Expression
1 alephexp2 9980 . . 3 (𝐴 ∈ On → (2om (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))})
2 enen2 8634 . . 3 ((2om (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} → ((ℵ‘suc 𝐴) ≈ (2om (ℵ‘𝐴)) ↔ (ℵ‘suc 𝐴) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}))
31, 2syl 17 . 2 (𝐴 ∈ On → ((ℵ‘suc 𝐴) ≈ (2om (ℵ‘𝐴)) ↔ (ℵ‘suc 𝐴) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}))
43bicomd 226 1 (𝐴 ∈ On → ((ℵ‘suc 𝐴) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} ↔ (ℵ‘suc 𝐴) ≈ (2om (ℵ‘𝐴))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∈ wcel 2115  {cab 2799   ⊆ wss 3910   class class class wbr 5039  Oncon0 6164  suc csuc 6166  ‘cfv 6328  (class class class)co 7130  2oc2o 8071   ↑m cmap 8381   ≈ cen 8481  ℵcale 9341 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-ac2 9862 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-oi 8950  df-har 8997  df-card 9344  df-aleph 9345  df-acn 9347  df-ac 9519 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator