MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ennum Structured version   Visualization version   GIF version

Theorem ennum 9876
Description: Equinumerous sets are equi-numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
ennum (𝐴𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card))

Proof of Theorem ennum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enen2 9059 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21rexbidv 3157 . 2 (𝐴𝐵 → (∃𝑥 ∈ On 𝑥𝐴 ↔ ∃𝑥 ∈ On 𝑥𝐵))
3 isnum2 9874 . 2 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
4 isnum2 9874 . 2 (𝐵 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐵)
52, 3, 43bitr4g 314 1 (𝐴𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wrex 3053   class class class wbr 5102  dom cdm 5631  Oncon0 6320  cen 8892  cardccrd 9864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-er 8648  df-en 8896  df-card 9868
This theorem is referenced by:  carden2b  9896  dfac12lem3  10075  dfac12k  10077  qnnen  16157  cygctb  19798
  Copyright terms: Public domain W3C validator