MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ennum Structured version   Visualization version   GIF version

Theorem ennum 9851
Description: Equinumerous sets are equi-numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
ennum (𝐴𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card))

Proof of Theorem ennum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enen2 9042 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21rexbidv 3157 . 2 (𝐴𝐵 → (∃𝑥 ∈ On 𝑥𝐴 ↔ ∃𝑥 ∈ On 𝑥𝐵))
3 isnum2 9849 . 2 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
4 isnum2 9849 . 2 (𝐵 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐵)
52, 3, 43bitr4g 314 1 (𝐴𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2113  wrex 3057   class class class wbr 5095  dom cdm 5621  Oncon0 6314  cen 8876  cardccrd 9839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-er 8631  df-en 8880  df-card 9843
This theorem is referenced by:  carden2b  9871  dfac12lem3  10048  dfac12k  10050  qnnen  16129  cygctb  19812
  Copyright terms: Public domain W3C validator