MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ennum Structured version   Visualization version   GIF version

Theorem ennum 9360
Description: Equinumerous sets are equi-numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
ennum (𝐴𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card))

Proof of Theorem ennum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enen2 8642 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21rexbidv 3256 . 2 (𝐴𝐵 → (∃𝑥 ∈ On 𝑥𝐴 ↔ ∃𝑥 ∈ On 𝑥𝐵))
3 isnum2 9358 . 2 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
4 isnum2 9358 . 2 (𝐵 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐵)
52, 3, 43bitr4g 317 1 (𝐴𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2111  wrex 3107   class class class wbr 5030  dom cdm 5519  Oncon0 6159  cen 8489  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-er 8272  df-en 8493  df-card 9352
This theorem is referenced by:  carden2b  9380  dfac12lem3  9556  dfac12k  9558  qnnen  15558  cygctb  19005
  Copyright terms: Public domain W3C validator