![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ennum | Structured version Visualization version GIF version |
Description: Equinumerous sets are equi-numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
ennum | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enen2 9156 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ≈ 𝐴 ↔ 𝑥 ≈ 𝐵)) | |
2 | 1 | rexbidv 3176 | . 2 ⊢ (𝐴 ≈ 𝐵 → (∃𝑥 ∈ On 𝑥 ≈ 𝐴 ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐵)) |
3 | isnum2 9982 | . 2 ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) | |
4 | isnum2 9982 | . 2 ⊢ (𝐵 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐵) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2105 ∃wrex 3067 class class class wbr 5147 dom cdm 5688 Oncon0 6385 ≈ cen 8980 cardccrd 9972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ord 6388 df-on 6389 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-er 8743 df-en 8984 df-card 9976 |
This theorem is referenced by: carden2b 10004 dfac12lem3 10183 dfac12k 10185 qnnen 16245 cygctb 19924 |
Copyright terms: Public domain | W3C validator |