| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ennum | Structured version Visualization version GIF version | ||
| Description: Equinumerous sets are equi-numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| ennum | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enen2 9140 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ≈ 𝐴 ↔ 𝑥 ≈ 𝐵)) | |
| 2 | 1 | rexbidv 3166 | . 2 ⊢ (𝐴 ≈ 𝐵 → (∃𝑥 ∈ On 𝑥 ≈ 𝐴 ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐵)) |
| 3 | isnum2 9967 | . 2 ⊢ (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) | |
| 4 | isnum2 9967 | . 2 ⊢ (𝐵 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥 ≈ 𝐵) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 ∃wrex 3059 class class class wbr 5123 dom cdm 5665 Oncon0 6363 ≈ cen 8964 cardccrd 9957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-er 8727 df-en 8968 df-card 9961 |
| This theorem is referenced by: carden2b 9989 dfac12lem3 10168 dfac12k 10170 qnnen 16232 cygctb 19879 |
| Copyright terms: Public domain | W3C validator |