MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ennum Structured version   Visualization version   GIF version

Theorem ennum 9939
Description: Equinumerous sets are equi-numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
ennum (𝐴𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card))

Proof of Theorem ennum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enen2 9115 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21rexbidv 3170 . 2 (𝐴𝐵 → (∃𝑥 ∈ On 𝑥𝐴 ↔ ∃𝑥 ∈ On 𝑥𝐵))
3 isnum2 9937 . 2 (𝐴 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐴)
4 isnum2 9937 . 2 (𝐵 ∈ dom card ↔ ∃𝑥 ∈ On 𝑥𝐵)
52, 3, 43bitr4g 314 1 (𝐴𝐵 → (𝐴 ∈ dom card ↔ 𝐵 ∈ dom card))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098  wrex 3062   class class class wbr 5139  dom cdm 5667  Oncon0 6355  cen 8933  cardccrd 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-er 8700  df-en 8937  df-card 9931
This theorem is referenced by:  carden2b  9959  dfac12lem3  10137  dfac12k  10139  qnnen  16159  cygctb  19808
  Copyright terms: Public domain W3C validator