MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domen1 Structured version   Visualization version   GIF version

Theorem domen1 8906
Description: Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.)
Assertion
Ref Expression
domen1 (𝐴𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem domen1
StepHypRef Expression
1 ensym 8789 . . 3 (𝐴𝐵𝐵𝐴)
2 endomtr 8798 . . 3 ((𝐵𝐴𝐴𝐶) → 𝐵𝐶)
31, 2sylan 580 . 2 ((𝐴𝐵𝐴𝐶) → 𝐵𝐶)
4 endomtr 8798 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
53, 4impbida 798 1 (𝐴𝐵 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   class class class wbr 5074  cen 8730  cdom 8731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-er 8498  df-en 8734  df-dom 8735
This theorem is referenced by:  unxpwdom2  9347  carddomi2  9728  djudom2  9939  djuinf  9944  djulepw  9948  pwdjudom  9972  gchpwdom  10426  hargch  10429  dis2ndc  22611  isinf2  35576
  Copyright terms: Public domain W3C validator