| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domen1 | Structured version Visualization version GIF version | ||
| Description: Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.) |
| Ref | Expression |
|---|---|
| domen1 | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐶 ↔ 𝐵 ≼ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym 9017 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 2 | endomtr 9026 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐴 ≼ 𝐶) → 𝐵 ≼ 𝐶) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ≼ 𝐶) → 𝐵 ≼ 𝐶) |
| 4 | endomtr 9026 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 5 | 3, 4 | impbida 800 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐶 ↔ 𝐵 ≼ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 class class class wbr 5119 ≈ cen 8956 ≼ cdom 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-er 8719 df-en 8960 df-dom 8961 |
| This theorem is referenced by: unxpwdom2 9602 carddomi2 9984 djudom2 10198 djuinf 10203 djulepw 10207 pwdjudom 10229 gchpwdom 10684 hargch 10687 dis2ndc 23398 isinf2 37423 fisdomnn 42295 |
| Copyright terms: Public domain | W3C validator |