MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephexp1 Structured version   Visualization version   GIF version

Theorem alephexp1 10574
Description: An exponentiation law for alephs. Lemma 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
alephexp1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ (2om (ℵ‘𝐵)))

Proof of Theorem alephexp1
StepHypRef Expression
1 alephon 10064 . . . 4 (ℵ‘𝐵) ∈ On
2 onenon 9944 . . . 4 ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card)
31, 2mp1i 13 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (ℵ‘𝐵) ∈ dom card)
4 fvex 6905 . . . 4 (ℵ‘𝐵) ∈ V
5 simplr 768 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 𝐵 ∈ On)
6 alephgeom 10077 . . . . 5 (𝐵 ∈ On ↔ ω ⊆ (ℵ‘𝐵))
75, 6sylib 217 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ω ⊆ (ℵ‘𝐵))
8 ssdomg 8996 . . . 4 ((ℵ‘𝐵) ∈ V → (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵)))
94, 7, 8mpsyl 68 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ω ≼ (ℵ‘𝐵))
10 fvex 6905 . . . 4 (ℵ‘𝐴) ∈ V
11 ordom 7865 . . . . . 6 Ord ω
12 2onn 8641 . . . . . 6 2o ∈ ω
13 ordelss 6381 . . . . . 6 ((Ord ω ∧ 2o ∈ ω) → 2o ⊆ ω)
1411, 12, 13mp2an 691 . . . . 5 2o ⊆ ω
15 simpll 766 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 𝐴 ∈ On)
16 alephgeom 10077 . . . . . 6 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
1715, 16sylib 217 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ω ⊆ (ℵ‘𝐴))
1814, 17sstrid 3994 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 2o ⊆ (ℵ‘𝐴))
19 ssdomg 8996 . . . 4 ((ℵ‘𝐴) ∈ V → (2o ⊆ (ℵ‘𝐴) → 2o ≼ (ℵ‘𝐴)))
2010, 18, 19mpsyl 68 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 2o ≼ (ℵ‘𝐴))
21 alephord3 10073 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ⊆ (ℵ‘𝐵)))
22 ssdomg 8996 . . . . . . 7 ((ℵ‘𝐵) ∈ V → ((ℵ‘𝐴) ⊆ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
234, 22ax-mp 5 . . . . . 6 ((ℵ‘𝐴) ⊆ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))
2421, 23syl6bi 253 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
2524imp 408 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))
264canth2 9130 . . . . 5 (ℵ‘𝐵) ≺ 𝒫 (ℵ‘𝐵)
27 sdomdom 8976 . . . . 5 ((ℵ‘𝐵) ≺ 𝒫 (ℵ‘𝐵) → (ℵ‘𝐵) ≼ 𝒫 (ℵ‘𝐵))
2826, 27ax-mp 5 . . . 4 (ℵ‘𝐵) ≼ 𝒫 (ℵ‘𝐵)
29 domtr 9003 . . . 4 (((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ (ℵ‘𝐵) ≼ 𝒫 (ℵ‘𝐵)) → (ℵ‘𝐴) ≼ 𝒫 (ℵ‘𝐵))
3025, 28, 29sylancl 587 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (ℵ‘𝐴) ≼ 𝒫 (ℵ‘𝐵))
31 mappwen 10107 . . 3 ((((ℵ‘𝐵) ∈ dom card ∧ ω ≼ (ℵ‘𝐵)) ∧ (2o ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ 𝒫 (ℵ‘𝐵))) → ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ 𝒫 (ℵ‘𝐵))
323, 9, 20, 30, 31syl22anc 838 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ 𝒫 (ℵ‘𝐵))
334pw2en 9079 . . 3 𝒫 (ℵ‘𝐵) ≈ (2om (ℵ‘𝐵))
34 enen2 9118 . . 3 (𝒫 (ℵ‘𝐵) ≈ (2om (ℵ‘𝐵)) → (((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ 𝒫 (ℵ‘𝐵) ↔ ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ (2om (ℵ‘𝐵))))
3533, 34ax-mp 5 . 2 (((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ 𝒫 (ℵ‘𝐵) ↔ ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ (2om (ℵ‘𝐵)))
3632, 35sylib 217 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ (2om (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  Vcvv 3475  wss 3949  𝒫 cpw 4603   class class class wbr 5149  dom cdm 5677  Ord word 6364  Oncon0 6365  cfv 6544  (class class class)co 7409  ωcom 7855  2oc2o 8460  m cmap 8820  cen 8936  cdom 8937  csdm 8938  cardccrd 9930  cale 9931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-oi 9505  df-har 9552  df-card 9934  df-aleph 9935
This theorem is referenced by:  alephexp2  10576
  Copyright terms: Public domain W3C validator