MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephexp1 Structured version   Visualization version   GIF version

Theorem alephexp1 10576
Description: An exponentiation law for alephs. Lemma 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
alephexp1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ (2om (ℵ‘𝐵)))

Proof of Theorem alephexp1
StepHypRef Expression
1 alephon 10066 . . . 4 (ℵ‘𝐵) ∈ On
2 onenon 9946 . . . 4 ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card)
31, 2mp1i 13 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (ℵ‘𝐵) ∈ dom card)
4 fvex 6904 . . . 4 (ℵ‘𝐵) ∈ V
5 simplr 767 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 𝐵 ∈ On)
6 alephgeom 10079 . . . . 5 (𝐵 ∈ On ↔ ω ⊆ (ℵ‘𝐵))
75, 6sylib 217 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ω ⊆ (ℵ‘𝐵))
8 ssdomg 8998 . . . 4 ((ℵ‘𝐵) ∈ V → (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵)))
94, 7, 8mpsyl 68 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ω ≼ (ℵ‘𝐵))
10 fvex 6904 . . . 4 (ℵ‘𝐴) ∈ V
11 ordom 7867 . . . . . 6 Ord ω
12 2onn 8643 . . . . . 6 2o ∈ ω
13 ordelss 6380 . . . . . 6 ((Ord ω ∧ 2o ∈ ω) → 2o ⊆ ω)
1411, 12, 13mp2an 690 . . . . 5 2o ⊆ ω
15 simpll 765 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 𝐴 ∈ On)
16 alephgeom 10079 . . . . . 6 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
1715, 16sylib 217 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ω ⊆ (ℵ‘𝐴))
1814, 17sstrid 3993 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 2o ⊆ (ℵ‘𝐴))
19 ssdomg 8998 . . . 4 ((ℵ‘𝐴) ∈ V → (2o ⊆ (ℵ‘𝐴) → 2o ≼ (ℵ‘𝐴)))
2010, 18, 19mpsyl 68 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → 2o ≼ (ℵ‘𝐴))
21 alephord3 10075 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ⊆ (ℵ‘𝐵)))
22 ssdomg 8998 . . . . . . 7 ((ℵ‘𝐵) ∈ V → ((ℵ‘𝐴) ⊆ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
234, 22ax-mp 5 . . . . . 6 ((ℵ‘𝐴) ⊆ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))
2421, 23syl6bi 252 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
2524imp 407 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))
264canth2 9132 . . . . 5 (ℵ‘𝐵) ≺ 𝒫 (ℵ‘𝐵)
27 sdomdom 8978 . . . . 5 ((ℵ‘𝐵) ≺ 𝒫 (ℵ‘𝐵) → (ℵ‘𝐵) ≼ 𝒫 (ℵ‘𝐵))
2826, 27ax-mp 5 . . . 4 (ℵ‘𝐵) ≼ 𝒫 (ℵ‘𝐵)
29 domtr 9005 . . . 4 (((ℵ‘𝐴) ≼ (ℵ‘𝐵) ∧ (ℵ‘𝐵) ≼ 𝒫 (ℵ‘𝐵)) → (ℵ‘𝐴) ≼ 𝒫 (ℵ‘𝐵))
3025, 28, 29sylancl 586 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (ℵ‘𝐴) ≼ 𝒫 (ℵ‘𝐵))
31 mappwen 10109 . . 3 ((((ℵ‘𝐵) ∈ dom card ∧ ω ≼ (ℵ‘𝐵)) ∧ (2o ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ 𝒫 (ℵ‘𝐵))) → ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ 𝒫 (ℵ‘𝐵))
323, 9, 20, 30, 31syl22anc 837 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ 𝒫 (ℵ‘𝐵))
334pw2en 9081 . . 3 𝒫 (ℵ‘𝐵) ≈ (2om (ℵ‘𝐵))
34 enen2 9120 . . 3 (𝒫 (ℵ‘𝐵) ≈ (2om (ℵ‘𝐵)) → (((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ 𝒫 (ℵ‘𝐵) ↔ ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ (2om (ℵ‘𝐵))))
3533, 34ax-mp 5 . 2 (((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ 𝒫 (ℵ‘𝐵) ↔ ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ (2om (ℵ‘𝐵)))
3632, 35sylib 217 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((ℵ‘𝐴) ↑m (ℵ‘𝐵)) ≈ (2om (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3474  wss 3948  𝒫 cpw 4602   class class class wbr 5148  dom cdm 5676  Ord word 6363  Oncon0 6364  cfv 6543  (class class class)co 7411  ωcom 7857  2oc2o 8462  m cmap 8822  cen 8938  cdom 8939  csdm 8940  cardccrd 9932  cale 9933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-oi 9507  df-har 9554  df-card 9936  df-aleph 9937
This theorem is referenced by:  alephexp2  10578
  Copyright terms: Public domain W3C validator