MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snmapen1 Structured version   Visualization version   GIF version

Theorem snmapen1 9016
Description: Set exponentiation: a singleton to any set is equinumerous to ordinal 1. (Proposed by BJ, 17-Jul-2022.) (Contributed by AV, 17-Jul-2022.)
Assertion
Ref Expression
snmapen1 ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ≈ 1o)

Proof of Theorem snmapen1
StepHypRef Expression
1 snmapen 9015 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴})
2 ensn1g 8999 . . 3 (𝐴𝑉 → {𝐴} ≈ 1o)
32adantr 480 . 2 ((𝐴𝑉𝐵𝑊) → {𝐴} ≈ 1o)
4 entr 8983 . 2 ((({𝐴} ↑m 𝐵) ≈ {𝐴} ∧ {𝐴} ≈ 1o) → ({𝐴} ↑m 𝐵) ≈ 1o)
51, 3, 4syl2anc 584 1 ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {csn 4597   class class class wbr 5115  (class class class)co 7394  1oc1o 8436  m cmap 8803  cen 8919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1o 8443  df-er 8682  df-map 8805  df-en 8923
This theorem is referenced by:  map1  9017
  Copyright terms: Public domain W3C validator