MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snmapen1 Structured version   Visualization version   GIF version

Theorem snmapen1 9035
Description: Set exponentiation: a singleton to any set is equinumerous to ordinal 1. (Proposed by BJ, 17-Jul-2022.) (Contributed by AV, 17-Jul-2022.)
Assertion
Ref Expression
snmapen1 ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ≈ 1o)

Proof of Theorem snmapen1
StepHypRef Expression
1 snmapen 9034 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ≈ {𝐴})
2 ensn1g 9015 . . 3 (𝐴𝑉 → {𝐴} ≈ 1o)
32adantr 481 . 2 ((𝐴𝑉𝐵𝑊) → {𝐴} ≈ 1o)
4 entr 8998 . 2 ((({𝐴} ↑m 𝐵) ≈ {𝐴} ∧ {𝐴} ≈ 1o) → ({𝐴} ↑m 𝐵) ≈ 1o)
51, 3, 4syl2anc 584 1 ((𝐴𝑉𝐵𝑊) → ({𝐴} ↑m 𝐵) ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  {csn 4627   class class class wbr 5147  (class class class)co 7405  1oc1o 8455  m cmap 8816  cen 8932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1o 8462  df-er 8699  df-map 8818  df-en 8936
This theorem is referenced by:  map1  9036
  Copyright terms: Public domain W3C validator