| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdom2 | Structured version Visualization version GIF version | ||
| Description: An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011.) |
| Ref | Expression |
|---|---|
| prdom2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4619 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | ensn1g 9041 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
| 3 | endom 8998 | . . . . . . . 8 ⊢ ({𝐴} ≈ 1o → {𝐴} ≼ 1o) | |
| 4 | 1sdom2 9253 | . . . . . . . 8 ⊢ 1o ≺ 2o | |
| 5 | domsdomtr 9131 | . . . . . . . . 9 ⊢ (({𝐴} ≼ 1o ∧ 1o ≺ 2o) → {𝐴} ≺ 2o) | |
| 6 | sdomdom 8999 | . . . . . . . . 9 ⊢ ({𝐴} ≺ 2o → {𝐴} ≼ 2o) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (({𝐴} ≼ 1o ∧ 1o ≺ 2o) → {𝐴} ≼ 2o) |
| 8 | 3, 4, 7 | sylancl 586 | . . . . . . 7 ⊢ ({𝐴} ≈ 1o → {𝐴} ≼ 2o) |
| 9 | 2, 8 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≼ 2o) |
| 10 | 1, 9 | eqbrtrrid 5160 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴, 𝐴} ≼ 2o) |
| 11 | preq2 4715 | . . . . . 6 ⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴}) | |
| 12 | 11 | breq1d 5134 | . . . . 5 ⊢ (𝐵 = 𝐴 → ({𝐴, 𝐵} ≼ 2o ↔ {𝐴, 𝐴} ≼ 2o)) |
| 13 | 10, 12 | imbitrrid 246 | . . . 4 ⊢ (𝐵 = 𝐴 → (𝐴 ∈ 𝐶 → {𝐴, 𝐵} ≼ 2o)) |
| 14 | 13 | eqcoms 2744 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 → {𝐴, 𝐵} ≼ 2o)) |
| 15 | 14 | adantrd 491 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o)) |
| 16 | pr2ne 10023 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) | |
| 17 | 16 | biimprd 248 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} ≈ 2o)) |
| 18 | endom 8998 | . . 3 ⊢ ({𝐴, 𝐵} ≈ 2o → {𝐴, 𝐵} ≼ 2o) | |
| 19 | 17, 18 | syl6com 37 | . 2 ⊢ (𝐴 ≠ 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o)) |
| 20 | 15, 19 | pm2.61ine 3016 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {csn 4606 {cpr 4608 class class class wbr 5124 1oc1o 8478 2oc2o 8479 ≈ cen 8961 ≼ cdom 8962 ≺ csdm 8963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |