![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdom2 | Structured version Visualization version GIF version |
Description: An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011.) |
Ref | Expression |
---|---|
prdom2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4644 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | ensn1g 9061 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
3 | endom 9018 | . . . . . . . 8 ⊢ ({𝐴} ≈ 1o → {𝐴} ≼ 1o) | |
4 | 1sdom2 9274 | . . . . . . . 8 ⊢ 1o ≺ 2o | |
5 | domsdomtr 9151 | . . . . . . . . 9 ⊢ (({𝐴} ≼ 1o ∧ 1o ≺ 2o) → {𝐴} ≺ 2o) | |
6 | sdomdom 9019 | . . . . . . . . 9 ⊢ ({𝐴} ≺ 2o → {𝐴} ≼ 2o) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (({𝐴} ≼ 1o ∧ 1o ≺ 2o) → {𝐴} ≼ 2o) |
8 | 3, 4, 7 | sylancl 586 | . . . . . . 7 ⊢ ({𝐴} ≈ 1o → {𝐴} ≼ 2o) |
9 | 2, 8 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≼ 2o) |
10 | 1, 9 | eqbrtrrid 5184 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴, 𝐴} ≼ 2o) |
11 | preq2 4739 | . . . . . 6 ⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴}) | |
12 | 11 | breq1d 5158 | . . . . 5 ⊢ (𝐵 = 𝐴 → ({𝐴, 𝐵} ≼ 2o ↔ {𝐴, 𝐴} ≼ 2o)) |
13 | 10, 12 | imbitrrid 246 | . . . 4 ⊢ (𝐵 = 𝐴 → (𝐴 ∈ 𝐶 → {𝐴, 𝐵} ≼ 2o)) |
14 | 13 | eqcoms 2743 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 → {𝐴, 𝐵} ≼ 2o)) |
15 | 14 | adantrd 491 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o)) |
16 | pr2ne 10042 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) | |
17 | 16 | biimprd 248 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} ≈ 2o)) |
18 | endom 9018 | . . 3 ⊢ ({𝐴, 𝐵} ≈ 2o → {𝐴, 𝐵} ≼ 2o) | |
19 | 17, 18 | syl6com 37 | . 2 ⊢ (𝐴 ≠ 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o)) |
20 | 15, 19 | pm2.61ine 3023 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {csn 4631 {cpr 4633 class class class wbr 5148 1oc1o 8498 2oc2o 8499 ≈ cen 8981 ≼ cdom 8982 ≺ csdm 8983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |