![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdom2 | Structured version Visualization version GIF version |
Description: An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011.) |
Ref | Expression |
---|---|
prdom2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4661 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | ensn1g 9084 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
3 | endom 9039 | . . . . . . . 8 ⊢ ({𝐴} ≈ 1o → {𝐴} ≼ 1o) | |
4 | 1sdom2 9303 | . . . . . . . 8 ⊢ 1o ≺ 2o | |
5 | domsdomtr 9178 | . . . . . . . . 9 ⊢ (({𝐴} ≼ 1o ∧ 1o ≺ 2o) → {𝐴} ≺ 2o) | |
6 | sdomdom 9040 | . . . . . . . . 9 ⊢ ({𝐴} ≺ 2o → {𝐴} ≼ 2o) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (({𝐴} ≼ 1o ∧ 1o ≺ 2o) → {𝐴} ≼ 2o) |
8 | 3, 4, 7 | sylancl 585 | . . . . . . 7 ⊢ ({𝐴} ≈ 1o → {𝐴} ≼ 2o) |
9 | 2, 8 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≼ 2o) |
10 | 1, 9 | eqbrtrrid 5202 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴, 𝐴} ≼ 2o) |
11 | preq2 4759 | . . . . . 6 ⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴}) | |
12 | 11 | breq1d 5176 | . . . . 5 ⊢ (𝐵 = 𝐴 → ({𝐴, 𝐵} ≼ 2o ↔ {𝐴, 𝐴} ≼ 2o)) |
13 | 10, 12 | imbitrrid 246 | . . . 4 ⊢ (𝐵 = 𝐴 → (𝐴 ∈ 𝐶 → {𝐴, 𝐵} ≼ 2o)) |
14 | 13 | eqcoms 2748 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 → {𝐴, 𝐵} ≼ 2o)) |
15 | 14 | adantrd 491 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o)) |
16 | pr2ne 10073 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) | |
17 | 16 | biimprd 248 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} ≈ 2o)) |
18 | endom 9039 | . . 3 ⊢ ({𝐴, 𝐵} ≈ 2o → {𝐴, 𝐵} ≼ 2o) | |
19 | 17, 18 | syl6com 37 | . 2 ⊢ (𝐴 ≠ 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o)) |
20 | 15, 19 | pm2.61ine 3031 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {csn 4648 {cpr 4650 class class class wbr 5166 1oc1o 8515 2oc2o 8516 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |