MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdom2 Structured version   Visualization version   GIF version

Theorem prdom2 10044
Description: An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011.)
Assertion
Ref Expression
prdom2 ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ≼ 2o)

Proof of Theorem prdom2
StepHypRef Expression
1 dfsn2 4644 . . . . . 6 {𝐴} = {𝐴, 𝐴}
2 ensn1g 9061 . . . . . . 7 (𝐴𝐶 → {𝐴} ≈ 1o)
3 endom 9018 . . . . . . . 8 ({𝐴} ≈ 1o → {𝐴} ≼ 1o)
4 1sdom2 9274 . . . . . . . 8 1o ≺ 2o
5 domsdomtr 9151 . . . . . . . . 9 (({𝐴} ≼ 1o ∧ 1o ≺ 2o) → {𝐴} ≺ 2o)
6 sdomdom 9019 . . . . . . . . 9 ({𝐴} ≺ 2o → {𝐴} ≼ 2o)
75, 6syl 17 . . . . . . . 8 (({𝐴} ≼ 1o ∧ 1o ≺ 2o) → {𝐴} ≼ 2o)
83, 4, 7sylancl 586 . . . . . . 7 ({𝐴} ≈ 1o → {𝐴} ≼ 2o)
92, 8syl 17 . . . . . 6 (𝐴𝐶 → {𝐴} ≼ 2o)
101, 9eqbrtrrid 5184 . . . . 5 (𝐴𝐶 → {𝐴, 𝐴} ≼ 2o)
11 preq2 4739 . . . . . 6 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
1211breq1d 5158 . . . . 5 (𝐵 = 𝐴 → ({𝐴, 𝐵} ≼ 2o ↔ {𝐴, 𝐴} ≼ 2o))
1310, 12imbitrrid 246 . . . 4 (𝐵 = 𝐴 → (𝐴𝐶 → {𝐴, 𝐵} ≼ 2o))
1413eqcoms 2743 . . 3 (𝐴 = 𝐵 → (𝐴𝐶 → {𝐴, 𝐵} ≼ 2o))
1514adantrd 491 . 2 (𝐴 = 𝐵 → ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ≼ 2o))
16 pr2ne 10042 . . . 4 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
1716biimprd 248 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2o))
18 endom 9018 . . 3 ({𝐴, 𝐵} ≈ 2o → {𝐴, 𝐵} ≼ 2o)
1917, 18syl6com 37 . 2 (𝐴𝐵 → ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ≼ 2o))
2015, 19pm2.61ine 3023 1 ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ≼ 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  {csn 4631  {cpr 4633   class class class wbr 5148  1oc1o 8498  2oc2o 8499  cen 8981  cdom 8982  csdm 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator