![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdom2 | Structured version Visualization version GIF version |
Description: An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011.) |
Ref | Expression |
---|---|
prdom2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4636 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | ensn1g 9018 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
3 | endom 8974 | . . . . . . . 8 ⊢ ({𝐴} ≈ 1o → {𝐴} ≼ 1o) | |
4 | 1sdom2 9239 | . . . . . . . 8 ⊢ 1o ≺ 2o | |
5 | domsdomtr 9111 | . . . . . . . . 9 ⊢ (({𝐴} ≼ 1o ∧ 1o ≺ 2o) → {𝐴} ≺ 2o) | |
6 | sdomdom 8975 | . . . . . . . . 9 ⊢ ({𝐴} ≺ 2o → {𝐴} ≼ 2o) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (({𝐴} ≼ 1o ∧ 1o ≺ 2o) → {𝐴} ≼ 2o) |
8 | 3, 4, 7 | sylancl 585 | . . . . . . 7 ⊢ ({𝐴} ≈ 1o → {𝐴} ≼ 2o) |
9 | 2, 8 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≼ 2o) |
10 | 1, 9 | eqbrtrrid 5177 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴, 𝐴} ≼ 2o) |
11 | preq2 4733 | . . . . . 6 ⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴}) | |
12 | 11 | breq1d 5151 | . . . . 5 ⊢ (𝐵 = 𝐴 → ({𝐴, 𝐵} ≼ 2o ↔ {𝐴, 𝐴} ≼ 2o)) |
13 | 10, 12 | imbitrrid 245 | . . . 4 ⊢ (𝐵 = 𝐴 → (𝐴 ∈ 𝐶 → {𝐴, 𝐵} ≼ 2o)) |
14 | 13 | eqcoms 2734 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 → {𝐴, 𝐵} ≼ 2o)) |
15 | 14 | adantrd 491 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o)) |
16 | pr2ne 9998 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) | |
17 | 16 | biimprd 247 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} ≈ 2o)) |
18 | endom 8974 | . . 3 ⊢ ({𝐴, 𝐵} ≈ 2o → {𝐴, 𝐵} ≼ 2o) | |
19 | 17, 18 | syl6com 37 | . 2 ⊢ (𝐴 ≠ 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o)) |
20 | 15, 19 | pm2.61ine 3019 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 {csn 4623 {cpr 4625 class class class wbr 5141 1oc1o 8457 2oc2o 8458 ≈ cen 8935 ≼ cdom 8936 ≺ csdm 8937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-1o 8464 df-2o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |