MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdom2 Structured version   Visualization version   GIF version

Theorem prdom2 9935
Description: An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011.)
Assertion
Ref Expression
prdom2 ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ≼ 2o)

Proof of Theorem prdom2
StepHypRef Expression
1 dfsn2 4598 . . . . . 6 {𝐴} = {𝐴, 𝐴}
2 ensn1g 8970 . . . . . . 7 (𝐴𝐶 → {𝐴} ≈ 1o)
3 endom 8927 . . . . . . . 8 ({𝐴} ≈ 1o → {𝐴} ≼ 1o)
4 1sdom2 9164 . . . . . . . 8 1o ≺ 2o
5 domsdomtr 9053 . . . . . . . . 9 (({𝐴} ≼ 1o ∧ 1o ≺ 2o) → {𝐴} ≺ 2o)
6 sdomdom 8928 . . . . . . . . 9 ({𝐴} ≺ 2o → {𝐴} ≼ 2o)
75, 6syl 17 . . . . . . . 8 (({𝐴} ≼ 1o ∧ 1o ≺ 2o) → {𝐴} ≼ 2o)
83, 4, 7sylancl 586 . . . . . . 7 ({𝐴} ≈ 1o → {𝐴} ≼ 2o)
92, 8syl 17 . . . . . 6 (𝐴𝐶 → {𝐴} ≼ 2o)
101, 9eqbrtrrid 5138 . . . . 5 (𝐴𝐶 → {𝐴, 𝐴} ≼ 2o)
11 preq2 4694 . . . . . 6 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
1211breq1d 5112 . . . . 5 (𝐵 = 𝐴 → ({𝐴, 𝐵} ≼ 2o ↔ {𝐴, 𝐴} ≼ 2o))
1310, 12imbitrrid 246 . . . 4 (𝐵 = 𝐴 → (𝐴𝐶 → {𝐴, 𝐵} ≼ 2o))
1413eqcoms 2737 . . 3 (𝐴 = 𝐵 → (𝐴𝐶 → {𝐴, 𝐵} ≼ 2o))
1514adantrd 491 . 2 (𝐴 = 𝐵 → ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ≼ 2o))
16 pr2ne 9933 . . . 4 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
1716biimprd 248 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2o))
18 endom 8927 . . 3 ({𝐴, 𝐵} ≈ 2o → {𝐴, 𝐵} ≼ 2o)
1917, 18syl6com 37 . 2 (𝐴𝐵 → ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ≼ 2o))
2015, 19pm2.61ine 3008 1 ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ≼ 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  {csn 4585  {cpr 4587   class class class wbr 5102  1oc1o 8404  2oc2o 8405  cen 8892  cdom 8893  csdm 8894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator