MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdom2 Structured version   Visualization version   GIF version

Theorem prdom2 9693
Description: An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011.)
Assertion
Ref Expression
prdom2 ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ≼ 2o)

Proof of Theorem prdom2
StepHypRef Expression
1 dfsn2 4571 . . . . . 6 {𝐴} = {𝐴, 𝐴}
2 ensn1g 8763 . . . . . . 7 (𝐴𝐶 → {𝐴} ≈ 1o)
3 endom 8722 . . . . . . . 8 ({𝐴} ≈ 1o → {𝐴} ≼ 1o)
4 1sdom2 8951 . . . . . . . 8 1o ≺ 2o
5 domsdomtr 8848 . . . . . . . . 9 (({𝐴} ≼ 1o ∧ 1o ≺ 2o) → {𝐴} ≺ 2o)
6 sdomdom 8723 . . . . . . . . 9 ({𝐴} ≺ 2o → {𝐴} ≼ 2o)
75, 6syl 17 . . . . . . . 8 (({𝐴} ≼ 1o ∧ 1o ≺ 2o) → {𝐴} ≼ 2o)
83, 4, 7sylancl 585 . . . . . . 7 ({𝐴} ≈ 1o → {𝐴} ≼ 2o)
92, 8syl 17 . . . . . 6 (𝐴𝐶 → {𝐴} ≼ 2o)
101, 9eqbrtrrid 5106 . . . . 5 (𝐴𝐶 → {𝐴, 𝐴} ≼ 2o)
11 preq2 4667 . . . . . 6 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
1211breq1d 5080 . . . . 5 (𝐵 = 𝐴 → ({𝐴, 𝐵} ≼ 2o ↔ {𝐴, 𝐴} ≼ 2o))
1310, 12syl5ibr 245 . . . 4 (𝐵 = 𝐴 → (𝐴𝐶 → {𝐴, 𝐵} ≼ 2o))
1413eqcoms 2746 . . 3 (𝐴 = 𝐵 → (𝐴𝐶 → {𝐴, 𝐵} ≼ 2o))
1514adantrd 491 . 2 (𝐴 = 𝐵 → ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ≼ 2o))
16 pr2ne 9692 . . . 4 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
1716biimprd 247 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2o))
18 endom 8722 . . 3 ({𝐴, 𝐵} ≈ 2o → {𝐴, 𝐵} ≼ 2o)
1917, 18syl6com 37 . 2 (𝐴𝐵 → ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ≼ 2o))
2015, 19pm2.61ine 3027 1 ((𝐴𝐶𝐵𝐷) → {𝐴, 𝐵} ≼ 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  {csn 4558  {cpr 4560   class class class wbr 5070  1oc1o 8260  2oc2o 8261  cen 8688  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator