![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dju1en | Structured version Visualization version GIF version |
Description: Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
dju1en | ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 9044 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → 𝐴 ≈ 𝐴) |
3 | ensn1g 9084 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
4 | 3 | ensymd 9065 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 1o ≈ {𝐴}) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → 1o ≈ {𝐴}) |
6 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → ¬ 𝐴 ∈ 𝐴) | |
7 | disjsn 4736 | . . . 4 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
8 | 6, 7 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ∩ {𝐴}) = ∅) |
9 | djuenun 10240 | . . 3 ⊢ ((𝐴 ≈ 𝐴 ∧ 1o ≈ {𝐴} ∧ (𝐴 ∩ {𝐴}) = ∅) → (𝐴 ⊔ 1o) ≈ (𝐴 ∪ {𝐴})) | |
10 | 2, 5, 8, 9 | syl3anc 1371 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ⊔ 1o) ≈ (𝐴 ∪ {𝐴})) |
11 | df-suc 6401 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
12 | 10, 11 | breqtrrdi 5208 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 {csn 4648 class class class wbr 5166 suc csuc 6397 1oc1o 8515 ≈ cen 9000 ⊔ cdju 9967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1st 8030 df-2nd 8031 df-1o 8522 df-er 8763 df-en 9004 df-dju 9970 |
This theorem is referenced by: dju1p1e2ALT 10244 nnadju 10267 pwsdompw 10272 |
Copyright terms: Public domain | W3C validator |