MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dju1en Structured version   Visualization version   GIF version

Theorem dju1en 9594
Description: Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
dju1en ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴)

Proof of Theorem dju1en
StepHypRef Expression
1 enrefg 8538 . . . 4 (𝐴𝑉𝐴𝐴)
21adantr 483 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → 𝐴𝐴)
3 ensn1g 8571 . . . . 5 (𝐴𝑉 → {𝐴} ≈ 1o)
43ensymd 8557 . . . 4 (𝐴𝑉 → 1o ≈ {𝐴})
54adantr 483 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → 1o ≈ {𝐴})
6 simpr 487 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → ¬ 𝐴𝐴)
7 disjsn 4644 . . . 4 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
86, 7sylibr 236 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ∩ {𝐴}) = ∅)
9 djuenun 9593 . . 3 ((𝐴𝐴 ∧ 1o ≈ {𝐴} ∧ (𝐴 ∩ {𝐴}) = ∅) → (𝐴 ⊔ 1o) ≈ (𝐴 ∪ {𝐴}))
102, 5, 8, 9syl3anc 1366 . 2 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ⊔ 1o) ≈ (𝐴 ∪ {𝐴}))
11 df-suc 6194 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
1210, 11breqtrrdi 5105 1 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  cun 3931  cin 3932  c0 4288  {csn 4564   class class class wbr 5063  suc csuc 6190  1oc1o 8092  cen 8503  cdju 9324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3495  df-sbc 3771  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-int 4874  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-ord 6191  df-on 6192  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-1st 7686  df-2nd 7687  df-1o 8099  df-er 8286  df-en 8507  df-dju 9327
This theorem is referenced by:  dju1p1e2ALT  9597  pwsdompw  9623
  Copyright terms: Public domain W3C validator