| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dju1en | Structured version Visualization version GIF version | ||
| Description: Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| dju1en | ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 8958 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → 𝐴 ≈ 𝐴) |
| 3 | ensn1g 8996 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
| 4 | 3 | ensymd 8979 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 1o ≈ {𝐴}) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → 1o ≈ {𝐴}) |
| 6 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → ¬ 𝐴 ∈ 𝐴) | |
| 7 | disjsn 4678 | . . . 4 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
| 8 | 6, 7 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ∩ {𝐴}) = ∅) |
| 9 | djuenun 10131 | . . 3 ⊢ ((𝐴 ≈ 𝐴 ∧ 1o ≈ {𝐴} ∧ (𝐴 ∩ {𝐴}) = ∅) → (𝐴 ⊔ 1o) ≈ (𝐴 ∪ {𝐴})) | |
| 10 | 2, 5, 8, 9 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ⊔ 1o) ≈ (𝐴 ∪ {𝐴})) |
| 11 | df-suc 6341 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 12 | 10, 11 | breqtrrdi 5152 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ∩ cin 3916 ∅c0 4299 {csn 4592 class class class wbr 5110 suc csuc 6337 1oc1o 8430 ≈ cen 8918 ⊔ cdju 9858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-1st 7971 df-2nd 7972 df-1o 8437 df-er 8674 df-en 8922 df-dju 9861 |
| This theorem is referenced by: dju1p1e2ALT 10135 nnadju 10158 pwsdompw 10163 |
| Copyright terms: Public domain | W3C validator |