MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dju1en Structured version   Visualization version   GIF version

Theorem dju1en 10212
Description: Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
dju1en ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴)

Proof of Theorem dju1en
StepHypRef Expression
1 enrefg 9024 . . . 4 (𝐴𝑉𝐴𝐴)
21adantr 480 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → 𝐴𝐴)
3 ensn1g 9062 . . . . 5 (𝐴𝑉 → {𝐴} ≈ 1o)
43ensymd 9045 . . . 4 (𝐴𝑉 → 1o ≈ {𝐴})
54adantr 480 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → 1o ≈ {𝐴})
6 simpr 484 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → ¬ 𝐴𝐴)
7 disjsn 4711 . . . 4 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
86, 7sylibr 234 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ∩ {𝐴}) = ∅)
9 djuenun 10211 . . 3 ((𝐴𝐴 ∧ 1o ≈ {𝐴} ∧ (𝐴 ∩ {𝐴}) = ∅) → (𝐴 ⊔ 1o) ≈ (𝐴 ∪ {𝐴}))
102, 5, 8, 9syl3anc 1373 . 2 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ⊔ 1o) ≈ (𝐴 ∪ {𝐴}))
11 df-suc 6390 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
1210, 11breqtrrdi 5185 1 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  cun 3949  cin 3950  c0 4333  {csn 4626   class class class wbr 5143  suc csuc 6386  1oc1o 8499  cen 8982  cdju 9938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-1st 8014  df-2nd 8015  df-1o 8506  df-er 8745  df-en 8986  df-dju 9941
This theorem is referenced by:  dju1p1e2ALT  10215  nnadju  10238  pwsdompw  10243
  Copyright terms: Public domain W3C validator