![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dju1en | Structured version Visualization version GIF version |
Description: Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
dju1en | ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 8977 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → 𝐴 ≈ 𝐴) |
3 | ensn1g 9016 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
4 | 3 | ensymd 8998 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 1o ≈ {𝐴}) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → 1o ≈ {𝐴}) |
6 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → ¬ 𝐴 ∈ 𝐴) | |
7 | disjsn 4708 | . . . 4 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
8 | 6, 7 | sylibr 233 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ∩ {𝐴}) = ∅) |
9 | djuenun 10162 | . . 3 ⊢ ((𝐴 ≈ 𝐴 ∧ 1o ≈ {𝐴} ∧ (𝐴 ∩ {𝐴}) = ∅) → (𝐴 ⊔ 1o) ≈ (𝐴 ∪ {𝐴})) | |
10 | 2, 5, 8, 9 | syl3anc 1368 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ⊔ 1o) ≈ (𝐴 ∪ {𝐴})) |
11 | df-suc 6361 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
12 | 10, 11 | breqtrrdi 5181 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∪ cun 3939 ∩ cin 3940 ∅c0 4315 {csn 4621 class class class wbr 5139 suc csuc 6357 1oc1o 8455 ≈ cen 8933 ⊔ cdju 9890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6358 df-on 6359 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-1st 7969 df-2nd 7970 df-1o 8462 df-er 8700 df-en 8937 df-dju 9893 |
This theorem is referenced by: dju1p1e2ALT 10166 nnadju 10189 pwsdompw 10196 |
Copyright terms: Public domain | W3C validator |