MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzdisj Structured version   Visualization version   GIF version

Theorem fzdisj 13568
Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzdisj (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅)

Proof of Theorem fzdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3942 . . . 4 (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) ↔ (𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)))
2 elfzel1 13540 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
32adantl 481 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
43zred 12697 . . . . 5 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ)
5 elfzel2 13539 . . . . . . 7 (𝑥 ∈ (𝐽...𝐾) → 𝐾 ∈ ℤ)
65adantr 480 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ)
76zred 12697 . . . . 5 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ)
8 elfzelz 13541 . . . . . . . 8 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
98zred 12697 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
109adantl 481 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ)
11 elfzle1 13544 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑀𝑥)
1211adantl 481 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀𝑥)
13 elfzle2 13545 . . . . . . 7 (𝑥 ∈ (𝐽...𝐾) → 𝑥𝐾)
1413adantr 480 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥𝐾)
154, 10, 7, 12, 14letrd 11392 . . . . 5 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀𝐾)
164, 7, 15lensymd 11386 . . . 4 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀)
171, 16sylbi 217 . . 3 (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀)
1817con2i 139 . 2 (𝐾 < 𝑀 → ¬ 𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)))
1918eq0rdv 4382 1 (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  cin 3925  c0 4308   class class class wbr 5119  (class class class)co 7405  cr 11128   < clt 11269  cle 11270  cz 12588  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-neg 11469  df-z 12589  df-uz 12853  df-fz 13525
This theorem is referenced by:  fsumm1  15767  fsum1p  15769  o1fsum  15829  climcndslem1  15865  climcndslem2  15866  mertenslem1  15900  fprod1p  15984  fprodeq0  15991  fallfacval4  16059  prmreclem5  16940  strleun  17176  uniioombllem3  25538  mtest  26365  birthdaylem2  26914  fsumharmonic  26974  ftalem5  27039  chtdif  27120  ppidif  27125  gausslemma2dlem4  27332  gausslemma2dlem6  27335  lgsquadlem2  27344  dchrisum0lem1b  27478  dchrisum0lem3  27482  pntrsumbnd2  27530  pntrlog2bndlem6  27546  pntpbnd2  27550  pntlemf  27568  axlowdimlem2  28922  axlowdimlem16  28936  esumpmono  34110  ballotlemfrceq  34561  fsum2dsub  34639  poimirlem1  37645  poimirlem2  37646  poimirlem3  37647  poimirlem4  37648  poimirlem6  37650  poimirlem7  37651  poimirlem11  37655  poimirlem12  37656  poimirlem16  37660  poimirlem17  37661  poimirlem19  37663  poimirlem20  37664  poimirlem23  37667  poimirlem24  37668  poimirlem25  37669  poimirlem28  37672  poimirlem29  37673  poimirlem31  37675  sticksstones6  42164  sticksstones7  42165  metakunt18  42235  metakunt20  42237  prodsplit  42253  sumcubes  42362  eldioph2lem1  42783  stoweidlem11  46040
  Copyright terms: Public domain W3C validator