| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzdisj | Structured version Visualization version GIF version | ||
| Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| Ref | Expression |
|---|---|
| fzdisj | ⊢ (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3942 | . . . 4 ⊢ (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) ↔ (𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁))) | |
| 2 | elfzel1 13540 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ) |
| 4 | 3 | zred 12697 | . . . . 5 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ) |
| 5 | elfzel2 13539 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝐾 ∈ ℤ) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ) |
| 7 | 6 | zred 12697 | . . . . 5 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ) |
| 8 | elfzelz 13541 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
| 9 | 8 | zred 12697 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ) |
| 10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ) |
| 11 | elfzle1 13544 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝑥) | |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝑥) |
| 13 | elfzle2 13545 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝑥 ≤ 𝐾) | |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ≤ 𝐾) |
| 15 | 4, 10, 7, 12, 14 | letrd 11392 | . . . . 5 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝐾) |
| 16 | 4, 7, 15 | lensymd 11386 | . . . 4 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀) |
| 17 | 1, 16 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀) |
| 18 | 17 | con2i 139 | . 2 ⊢ (𝐾 < 𝑀 → ¬ 𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁))) |
| 19 | 18 | eq0rdv 4382 | 1 ⊢ (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ∅c0 4308 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 < clt 11269 ≤ cle 11270 ℤcz 12588 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-neg 11469 df-z 12589 df-uz 12853 df-fz 13525 |
| This theorem is referenced by: fsumm1 15767 fsum1p 15769 o1fsum 15829 climcndslem1 15865 climcndslem2 15866 mertenslem1 15900 fprod1p 15984 fprodeq0 15991 fallfacval4 16059 prmreclem5 16940 strleun 17176 uniioombllem3 25538 mtest 26365 birthdaylem2 26914 fsumharmonic 26974 ftalem5 27039 chtdif 27120 ppidif 27125 gausslemma2dlem4 27332 gausslemma2dlem6 27335 lgsquadlem2 27344 dchrisum0lem1b 27478 dchrisum0lem3 27482 pntrsumbnd2 27530 pntrlog2bndlem6 27546 pntpbnd2 27550 pntlemf 27568 axlowdimlem2 28922 axlowdimlem16 28936 esumpmono 34110 ballotlemfrceq 34561 fsum2dsub 34639 poimirlem1 37645 poimirlem2 37646 poimirlem3 37647 poimirlem4 37648 poimirlem6 37650 poimirlem7 37651 poimirlem11 37655 poimirlem12 37656 poimirlem16 37660 poimirlem17 37661 poimirlem19 37663 poimirlem20 37664 poimirlem23 37667 poimirlem24 37668 poimirlem25 37669 poimirlem28 37672 poimirlem29 37673 poimirlem31 37675 sticksstones6 42164 sticksstones7 42165 metakunt18 42235 metakunt20 42237 prodsplit 42253 sumcubes 42362 eldioph2lem1 42783 stoweidlem11 46040 |
| Copyright terms: Public domain | W3C validator |