Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzdisj | Structured version Visualization version GIF version |
Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
fzdisj | ⊢ (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3903 | . . . 4 ⊢ (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) ↔ (𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁))) | |
2 | elfzel1 13255 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
3 | 2 | adantl 482 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ) |
4 | 3 | zred 12426 | . . . . 5 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ) |
5 | elfzel2 13254 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝐾 ∈ ℤ) | |
6 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ) |
7 | 6 | zred 12426 | . . . . 5 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ) |
8 | elfzelz 13256 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
9 | 8 | zred 12426 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ) |
10 | 9 | adantl 482 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ) |
11 | elfzle1 13259 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝑥) | |
12 | 11 | adantl 482 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝑥) |
13 | elfzle2 13260 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝑥 ≤ 𝐾) | |
14 | 13 | adantr 481 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ≤ 𝐾) |
15 | 4, 10, 7, 12, 14 | letrd 11132 | . . . . 5 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝐾) |
16 | 4, 7, 15 | lensymd 11126 | . . . 4 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀) |
17 | 1, 16 | sylbi 216 | . . 3 ⊢ (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀) |
18 | 17 | con2i 139 | . 2 ⊢ (𝐾 < 𝑀 → ¬ 𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁))) |
19 | 18 | eq0rdv 4338 | 1 ⊢ (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ∅c0 4256 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 < clt 11009 ≤ cle 11010 ℤcz 12319 ...cfz 13239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-neg 11208 df-z 12320 df-uz 12583 df-fz 13240 |
This theorem is referenced by: fsumm1 15463 fsum1p 15465 o1fsum 15525 climcndslem1 15561 climcndslem2 15562 mertenslem1 15596 fprod1p 15678 fprodeq0 15685 fallfacval4 15753 prmreclem5 16621 strleun 16858 uniioombllem3 24749 mtest 25563 birthdaylem2 26102 fsumharmonic 26161 ftalem5 26226 chtdif 26307 ppidif 26312 gausslemma2dlem4 26517 gausslemma2dlem6 26520 lgsquadlem2 26529 dchrisum0lem1b 26663 dchrisum0lem3 26667 pntrsumbnd2 26715 pntrlog2bndlem6 26731 pntpbnd2 26735 pntlemf 26753 axlowdimlem2 27311 axlowdimlem16 27325 esumpmono 32047 ballotlemfrceq 32495 fsum2dsub 32587 poimirlem1 35778 poimirlem2 35779 poimirlem3 35780 poimirlem4 35781 poimirlem6 35783 poimirlem7 35784 poimirlem11 35788 poimirlem12 35789 poimirlem16 35793 poimirlem17 35794 poimirlem19 35796 poimirlem20 35797 poimirlem23 35800 poimirlem24 35801 poimirlem25 35802 poimirlem28 35805 poimirlem29 35806 poimirlem31 35808 sticksstones6 40107 sticksstones7 40108 metakunt18 40142 metakunt20 40144 prodsplit 40161 eldioph2lem1 40582 stoweidlem11 43552 |
Copyright terms: Public domain | W3C validator |