MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzdisj Structured version   Visualization version   GIF version

Theorem fzdisj 13454
Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzdisj (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅)

Proof of Theorem fzdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3919 . . . 4 (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) ↔ (𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)))
2 elfzel1 13426 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
32adantl 481 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
43zred 12580 . . . . 5 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ)
5 elfzel2 13425 . . . . . . 7 (𝑥 ∈ (𝐽...𝐾) → 𝐾 ∈ ℤ)
65adantr 480 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ)
76zred 12580 . . . . 5 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ)
8 elfzelz 13427 . . . . . . . 8 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
98zred 12580 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
109adantl 481 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ)
11 elfzle1 13430 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑀𝑥)
1211adantl 481 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀𝑥)
13 elfzle2 13431 . . . . . . 7 (𝑥 ∈ (𝐽...𝐾) → 𝑥𝐾)
1413adantr 480 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥𝐾)
154, 10, 7, 12, 14letrd 11273 . . . . 5 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀𝐾)
164, 7, 15lensymd 11267 . . . 4 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀)
171, 16sylbi 217 . . 3 (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀)
1817con2i 139 . 2 (𝐾 < 𝑀 → ¬ 𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)))
1918eq0rdv 4358 1 (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3902  c0 4284   class class class wbr 5092  (class class class)co 7349  cr 11008   < clt 11149  cle 11150  cz 12471  ...cfz 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-neg 11350  df-z 12472  df-uz 12736  df-fz 13411
This theorem is referenced by:  fsumm1  15658  fsum1p  15660  o1fsum  15720  climcndslem1  15756  climcndslem2  15757  mertenslem1  15791  fprod1p  15875  fprodeq0  15882  fallfacval4  15950  prmreclem5  16832  strleun  17068  uniioombllem3  25484  mtest  26311  birthdaylem2  26860  fsumharmonic  26920  ftalem5  26985  chtdif  27066  ppidif  27071  gausslemma2dlem4  27278  gausslemma2dlem6  27281  lgsquadlem2  27290  dchrisum0lem1b  27424  dchrisum0lem3  27428  pntrsumbnd2  27476  pntrlog2bndlem6  27492  pntpbnd2  27496  pntlemf  27514  axlowdimlem2  28888  axlowdimlem16  28902  esumpmono  34052  ballotlemfrceq  34503  fsum2dsub  34581  poimirlem1  37611  poimirlem2  37612  poimirlem3  37613  poimirlem4  37614  poimirlem6  37616  poimirlem7  37617  poimirlem11  37621  poimirlem12  37622  poimirlem16  37626  poimirlem17  37627  poimirlem19  37629  poimirlem20  37630  poimirlem23  37633  poimirlem24  37634  poimirlem25  37635  poimirlem28  37638  poimirlem29  37639  poimirlem31  37641  sticksstones6  42134  sticksstones7  42135  sumcubes  42296  eldioph2lem1  42743  stoweidlem11  46002
  Copyright terms: Public domain W3C validator