| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzdisj | Structured version Visualization version GIF version | ||
| Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| Ref | Expression |
|---|---|
| fzdisj | ⊢ (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3933 | . . . 4 ⊢ (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) ↔ (𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁))) | |
| 2 | elfzel1 13491 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
| 3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ) |
| 4 | 3 | zred 12645 | . . . . 5 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ) |
| 5 | elfzel2 13490 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝐾 ∈ ℤ) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ) |
| 7 | 6 | zred 12645 | . . . . 5 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ) |
| 8 | elfzelz 13492 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ) | |
| 9 | 8 | zred 12645 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ) |
| 10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ) |
| 11 | elfzle1 13495 | . . . . . . 7 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑀 ≤ 𝑥) | |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝑥) |
| 13 | elfzle2 13496 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝑥 ≤ 𝐾) | |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ≤ 𝐾) |
| 15 | 4, 10, 7, 12, 14 | letrd 11338 | . . . . 5 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ≤ 𝐾) |
| 16 | 4, 7, 15 | lensymd 11332 | . . . 4 ⊢ ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀) |
| 17 | 1, 16 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀) |
| 18 | 17 | con2i 139 | . 2 ⊢ (𝐾 < 𝑀 → ¬ 𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁))) |
| 19 | 18 | eq0rdv 4373 | 1 ⊢ (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ∅c0 4299 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 < clt 11215 ≤ cle 11216 ℤcz 12536 ...cfz 13475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-neg 11415 df-z 12537 df-uz 12801 df-fz 13476 |
| This theorem is referenced by: fsumm1 15724 fsum1p 15726 o1fsum 15786 climcndslem1 15822 climcndslem2 15823 mertenslem1 15857 fprod1p 15941 fprodeq0 15948 fallfacval4 16016 prmreclem5 16898 strleun 17134 uniioombllem3 25493 mtest 26320 birthdaylem2 26869 fsumharmonic 26929 ftalem5 26994 chtdif 27075 ppidif 27080 gausslemma2dlem4 27287 gausslemma2dlem6 27290 lgsquadlem2 27299 dchrisum0lem1b 27433 dchrisum0lem3 27437 pntrsumbnd2 27485 pntrlog2bndlem6 27501 pntpbnd2 27505 pntlemf 27523 axlowdimlem2 28877 axlowdimlem16 28891 esumpmono 34076 ballotlemfrceq 34527 fsum2dsub 34605 poimirlem1 37622 poimirlem2 37623 poimirlem3 37624 poimirlem4 37625 poimirlem6 37627 poimirlem7 37628 poimirlem11 37632 poimirlem12 37633 poimirlem16 37637 poimirlem17 37638 poimirlem19 37640 poimirlem20 37641 poimirlem23 37644 poimirlem24 37645 poimirlem25 37646 poimirlem28 37649 poimirlem29 37650 poimirlem31 37652 sticksstones6 42146 sticksstones7 42147 sumcubes 42308 eldioph2lem1 42755 stoweidlem11 46016 |
| Copyright terms: Public domain | W3C validator |