MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzdisj Structured version   Visualization version   GIF version

Theorem fzdisj 13587
Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzdisj (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅)

Proof of Theorem fzdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elin 3978 . . . 4 (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) ↔ (𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)))
2 elfzel1 13559 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
32adantl 481 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℤ)
43zred 12719 . . . . 5 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ)
5 elfzel2 13558 . . . . . . 7 (𝑥 ∈ (𝐽...𝐾) → 𝐾 ∈ ℤ)
65adantr 480 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℤ)
76zred 12719 . . . . 5 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐾 ∈ ℝ)
8 elfzelz 13560 . . . . . . . 8 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
98zred 12719 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℝ)
109adantl 481 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ ℝ)
11 elfzle1 13563 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑀𝑥)
1211adantl 481 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀𝑥)
13 elfzle2 13564 . . . . . . 7 (𝑥 ∈ (𝐽...𝐾) → 𝑥𝐾)
1413adantr 480 . . . . . 6 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥𝐾)
154, 10, 7, 12, 14letrd 11415 . . . . 5 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑀𝐾)
164, 7, 15lensymd 11409 . . . 4 ((𝑥 ∈ (𝐽...𝐾) ∧ 𝑥 ∈ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀)
171, 16sylbi 217 . . 3 (𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)) → ¬ 𝐾 < 𝑀)
1817con2i 139 . 2 (𝐾 < 𝑀 → ¬ 𝑥 ∈ ((𝐽...𝐾) ∩ (𝑀...𝑁)))
1918eq0rdv 4412 1 (𝐾 < 𝑀 → ((𝐽...𝐾) ∩ (𝑀...𝑁)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  cin 3961  c0 4338   class class class wbr 5147  (class class class)co 7430  cr 11151   < clt 11292  cle 11293  cz 12610  ...cfz 13543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-pre-lttri 11226  ax-pre-lttrn 11227
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-neg 11492  df-z 12611  df-uz 12876  df-fz 13544
This theorem is referenced by:  fsumm1  15783  fsum1p  15785  o1fsum  15845  climcndslem1  15881  climcndslem2  15882  mertenslem1  15916  fprod1p  16000  fprodeq0  16007  fallfacval4  16075  prmreclem5  16953  strleun  17190  uniioombllem3  25633  mtest  26461  birthdaylem2  27009  fsumharmonic  27069  ftalem5  27134  chtdif  27215  ppidif  27220  gausslemma2dlem4  27427  gausslemma2dlem6  27430  lgsquadlem2  27439  dchrisum0lem1b  27573  dchrisum0lem3  27577  pntrsumbnd2  27625  pntrlog2bndlem6  27641  pntpbnd2  27645  pntlemf  27663  axlowdimlem2  28972  axlowdimlem16  28986  esumpmono  34059  ballotlemfrceq  34509  fsum2dsub  34600  poimirlem1  37607  poimirlem2  37608  poimirlem3  37609  poimirlem4  37610  poimirlem6  37612  poimirlem7  37613  poimirlem11  37617  poimirlem12  37618  poimirlem16  37622  poimirlem17  37623  poimirlem19  37625  poimirlem20  37626  poimirlem23  37629  poimirlem24  37630  poimirlem25  37631  poimirlem28  37634  poimirlem29  37635  poimirlem31  37637  sticksstones6  42132  sticksstones7  42133  metakunt18  42203  metakunt20  42205  prodsplit  42221  sumcubes  42325  eldioph2lem1  42747  stoweidlem11  45966
  Copyright terms: Public domain W3C validator