![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erngmul | Structured version Visualization version GIF version |
Description: Ring addition operation. (Contributed by NM, 10-Jun-2013.) |
Ref | Expression |
---|---|
erngset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
erngset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
erngset.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
erngset.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
erng.m | ⊢ · = (.r‘𝐷) |
Ref | Expression |
---|---|
erngmul | ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑈 · 𝑉) = (𝑈 ∘ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erngset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | erngset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | erngset.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | erngset.d | . . . 4 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
5 | erng.m | . . . 4 ⊢ · = (.r‘𝐷) | |
6 | 1, 2, 3, 4, 5 | erngfmul 36873 | . . 3 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑠 ∘ 𝑡))) |
7 | 6 | oveqd 6922 | . 2 ⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → (𝑈 · 𝑉) = (𝑈(𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑠 ∘ 𝑡))𝑉)) |
8 | coexg 7379 | . . 3 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈 ∘ 𝑉) ∈ V) | |
9 | coeq1 5512 | . . . 4 ⊢ (𝑠 = 𝑈 → (𝑠 ∘ 𝑡) = (𝑈 ∘ 𝑡)) | |
10 | coeq2 5513 | . . . 4 ⊢ (𝑡 = 𝑉 → (𝑈 ∘ 𝑡) = (𝑈 ∘ 𝑉)) | |
11 | eqid 2825 | . . . 4 ⊢ (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑠 ∘ 𝑡)) = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑠 ∘ 𝑡)) | |
12 | 9, 10, 11 | ovmpt2g 7055 | . . 3 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈 ∘ 𝑉) ∈ V) → (𝑈(𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑠 ∘ 𝑡))𝑉) = (𝑈 ∘ 𝑉)) |
13 | 8, 12 | mpd3an3 1590 | . 2 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈(𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑠 ∘ 𝑡))𝑉) = (𝑈 ∘ 𝑉)) |
14 | 7, 13 | sylan9eq 2881 | 1 ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑈 · 𝑉) = (𝑈 ∘ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 Vcvv 3414 ∘ ccom 5346 ‘cfv 6123 (class class class)co 6905 ↦ cmpt2 6907 .rcmulr 16306 LHypclh 36052 LTrncltrn 36169 TEndoctendo 36820 EDRingcedring 36821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-3 11415 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-struct 16224 df-ndx 16225 df-slot 16226 df-base 16228 df-plusg 16318 df-mulr 16319 df-edring 36825 |
This theorem is referenced by: erng1lem 37055 erngdvlem3 37058 erngdvlem4 37059 erng1r 37063 |
Copyright terms: Public domain | W3C validator |