Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fbasssin | Structured version Visualization version GIF version |
Description: A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Jeff Hankins, 1-Dec-2010.) |
Ref | Expression |
---|---|
fbasssin | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6788 | . . . . . . 7 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
2 | isfbas2 22894 | . . . . . . 7 ⊢ (𝑋 ∈ dom fBas → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧))))) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧))))) |
4 | 3 | ibi 266 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧)))) |
5 | 4 | simprd 495 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧))) |
6 | 5 | simp3d 1142 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧)) |
7 | ineq1 4136 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∩ 𝑧) = (𝐴 ∩ 𝑧)) | |
8 | 7 | sseq2d 3949 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ⊆ (𝑦 ∩ 𝑧) ↔ 𝑥 ⊆ (𝐴 ∩ 𝑧))) |
9 | 8 | rexbidv 3225 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧) ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝑧))) |
10 | ineq2 4137 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝐴 ∩ 𝑧) = (𝐴 ∩ 𝐵)) | |
11 | 10 | sseq2d 3949 | . . . . 5 ⊢ (𝑧 = 𝐵 → (𝑥 ⊆ (𝐴 ∩ 𝑧) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
12 | 11 | rexbidv 3225 | . . . 4 ⊢ (𝑧 = 𝐵 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝑧) ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
13 | 9, 12 | rspc2v 3562 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
14 | 6, 13 | syl5com 31 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
15 | 14 | 3impib 1114 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∉ wnel 3048 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 dom cdm 5580 ‘cfv 6418 fBascfbas 20498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-fbas 20507 |
This theorem is referenced by: fbssfi 22896 fbncp 22898 fbun 22899 fbfinnfr 22900 trfbas2 22902 filin 22913 fgcl 22937 fbasrn 22943 |
Copyright terms: Public domain | W3C validator |