MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasssin Structured version   Visualization version   GIF version

Theorem fbasssin 22441
Description: A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Jeff Hankins, 1-Dec-2010.)
Assertion
Ref Expression
fbasssin ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑋

Proof of Theorem fbasssin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6677 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
2 isfbas2 22440 . . . . . . 7 (𝑋 ∈ dom fBas → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))))
31, 2syl 17 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))))
43ibi 270 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧))))
54simprd 499 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))
65simp3d 1141 . . 3 (𝐹 ∈ (fBas‘𝑋) → ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
7 ineq1 4131 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑧) = (𝐴𝑧))
87sseq2d 3947 . . . . 5 (𝑦 = 𝐴 → (𝑥 ⊆ (𝑦𝑧) ↔ 𝑥 ⊆ (𝐴𝑧)))
98rexbidv 3256 . . . 4 (𝑦 = 𝐴 → (∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧) ↔ ∃𝑥𝐹 𝑥 ⊆ (𝐴𝑧)))
10 ineq2 4133 . . . . . 6 (𝑧 = 𝐵 → (𝐴𝑧) = (𝐴𝐵))
1110sseq2d 3947 . . . . 5 (𝑧 = 𝐵 → (𝑥 ⊆ (𝐴𝑧) ↔ 𝑥 ⊆ (𝐴𝐵)))
1211rexbidv 3256 . . . 4 (𝑧 = 𝐵 → (∃𝑥𝐹 𝑥 ⊆ (𝐴𝑧) ↔ ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
139, 12rspc2v 3581 . . 3 ((𝐴𝐹𝐵𝐹) → (∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
146, 13syl5com 31 . 2 (𝐹 ∈ (fBas‘𝑋) → ((𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
15143impib 1113 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wnel 3091  wral 3106  wrex 3107  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497  dom cdm 5519  cfv 6324  fBascfbas 20079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fv 6332  df-fbas 20088
This theorem is referenced by:  fbssfi  22442  fbncp  22444  fbun  22445  fbfinnfr  22446  trfbas2  22448  filin  22459  fgcl  22483  fbasrn  22489
  Copyright terms: Public domain W3C validator