MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasssin Structured version   Visualization version   GIF version

Theorem fbasssin 23865
Description: A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Jeff Hankins, 1-Dec-2010.)
Assertion
Ref Expression
fbasssin ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑋

Proof of Theorem fbasssin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6957 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
2 isfbas2 23864 . . . . . . 7 (𝑋 ∈ dom fBas → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))))
31, 2syl 17 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))))
43ibi 267 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧))))
54simprd 495 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))
65simp3d 1144 . . 3 (𝐹 ∈ (fBas‘𝑋) → ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
7 ineq1 4234 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑧) = (𝐴𝑧))
87sseq2d 4041 . . . . 5 (𝑦 = 𝐴 → (𝑥 ⊆ (𝑦𝑧) ↔ 𝑥 ⊆ (𝐴𝑧)))
98rexbidv 3185 . . . 4 (𝑦 = 𝐴 → (∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧) ↔ ∃𝑥𝐹 𝑥 ⊆ (𝐴𝑧)))
10 ineq2 4235 . . . . . 6 (𝑧 = 𝐵 → (𝐴𝑧) = (𝐴𝐵))
1110sseq2d 4041 . . . . 5 (𝑧 = 𝐵 → (𝑥 ⊆ (𝐴𝑧) ↔ 𝑥 ⊆ (𝐴𝐵)))
1211rexbidv 3185 . . . 4 (𝑧 = 𝐵 → (∃𝑥𝐹 𝑥 ⊆ (𝐴𝑧) ↔ ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
139, 12rspc2v 3646 . . 3 ((𝐴𝐹𝐵𝐹) → (∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
146, 13syl5com 31 . 2 (𝐹 ∈ (fBas‘𝑋) → ((𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
15143impib 1116 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wnel 3052  wral 3067  wrex 3076  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  dom cdm 5700  cfv 6573  fBascfbas 21375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-fbas 21384
This theorem is referenced by:  fbssfi  23866  fbncp  23868  fbun  23869  fbfinnfr  23870  trfbas2  23872  filin  23883  fgcl  23907  fbasrn  23913
  Copyright terms: Public domain W3C validator