![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fbasssin | Structured version Visualization version GIF version |
Description: A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Jeff Hankins, 1-Dec-2010.) |
Ref | Expression |
---|---|
fbasssin | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6922 | . . . . . . 7 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
2 | isfbas2 23694 | . . . . . . 7 ⊢ (𝑋 ∈ dom fBas → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧))))) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧))))) |
4 | 3 | ibi 267 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧)))) |
5 | 4 | simprd 495 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧))) |
6 | 5 | simp3d 1141 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧)) |
7 | ineq1 4200 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∩ 𝑧) = (𝐴 ∩ 𝑧)) | |
8 | 7 | sseq2d 4009 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ⊆ (𝑦 ∩ 𝑧) ↔ 𝑥 ⊆ (𝐴 ∩ 𝑧))) |
9 | 8 | rexbidv 3172 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧) ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝑧))) |
10 | ineq2 4201 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝐴 ∩ 𝑧) = (𝐴 ∩ 𝐵)) | |
11 | 10 | sseq2d 4009 | . . . . 5 ⊢ (𝑧 = 𝐵 → (𝑥 ⊆ (𝐴 ∩ 𝑧) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
12 | 11 | rexbidv 3172 | . . . 4 ⊢ (𝑧 = 𝐵 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝑧) ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
13 | 9, 12 | rspc2v 3617 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
14 | 6, 13 | syl5com 31 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
15 | 14 | 3impib 1113 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∉ wnel 3040 ∀wral 3055 ∃wrex 3064 ∩ cin 3942 ⊆ wss 3943 ∅c0 4317 𝒫 cpw 4597 dom cdm 5669 ‘cfv 6537 fBascfbas 21228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fv 6545 df-fbas 21237 |
This theorem is referenced by: fbssfi 23696 fbncp 23698 fbun 23699 fbfinnfr 23700 trfbas2 23702 filin 23713 fgcl 23737 fbasrn 23743 |
Copyright terms: Public domain | W3C validator |