MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasssin Structured version   Visualization version   GIF version

Theorem fbasssin 23749
Description: A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Jeff Hankins, 1-Dec-2010.)
Assertion
Ref Expression
fbasssin ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑋

Proof of Theorem fbasssin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6856 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
2 isfbas2 23748 . . . . . . 7 (𝑋 ∈ dom fBas → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))))
31, 2syl 17 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))))
43ibi 267 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧))))
54simprd 495 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))
65simp3d 1144 . . 3 (𝐹 ∈ (fBas‘𝑋) → ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
7 ineq1 4163 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑧) = (𝐴𝑧))
87sseq2d 3967 . . . . 5 (𝑦 = 𝐴 → (𝑥 ⊆ (𝑦𝑧) ↔ 𝑥 ⊆ (𝐴𝑧)))
98rexbidv 3156 . . . 4 (𝑦 = 𝐴 → (∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧) ↔ ∃𝑥𝐹 𝑥 ⊆ (𝐴𝑧)))
10 ineq2 4164 . . . . . 6 (𝑧 = 𝐵 → (𝐴𝑧) = (𝐴𝐵))
1110sseq2d 3967 . . . . 5 (𝑧 = 𝐵 → (𝑥 ⊆ (𝐴𝑧) ↔ 𝑥 ⊆ (𝐴𝐵)))
1211rexbidv 3156 . . . 4 (𝑧 = 𝐵 → (∃𝑥𝐹 𝑥 ⊆ (𝐴𝑧) ↔ ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
139, 12rspc2v 3588 . . 3 ((𝐴𝐹𝐵𝐹) → (∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
146, 13syl5com 31 . 2 (𝐹 ∈ (fBas‘𝑋) → ((𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
15143impib 1116 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wnel 3032  wral 3047  wrex 3056  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550  dom cdm 5616  cfv 6481  fBascfbas 21277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-fbas 21286
This theorem is referenced by:  fbssfi  23750  fbncp  23752  fbun  23753  fbfinnfr  23754  trfbas2  23756  filin  23767  fgcl  23791  fbasrn  23797
  Copyright terms: Public domain W3C validator