![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fbasssin | Structured version Visualization version GIF version |
Description: A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Jeff Hankins, 1-Dec-2010.) |
Ref | Expression |
---|---|
fbasssin | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6939 | . . . . . . 7 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
2 | isfbas2 23767 | . . . . . . 7 ⊢ (𝑋 ∈ dom fBas → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧))))) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧))))) |
4 | 3 | ibi 266 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧)))) |
5 | 4 | simprd 494 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧))) |
6 | 5 | simp3d 1141 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧)) |
7 | ineq1 4207 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∩ 𝑧) = (𝐴 ∩ 𝑧)) | |
8 | 7 | sseq2d 4014 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ⊆ (𝑦 ∩ 𝑧) ↔ 𝑥 ⊆ (𝐴 ∩ 𝑧))) |
9 | 8 | rexbidv 3176 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧) ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝑧))) |
10 | ineq2 4208 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝐴 ∩ 𝑧) = (𝐴 ∩ 𝐵)) | |
11 | 10 | sseq2d 4014 | . . . . 5 ⊢ (𝑧 = 𝐵 → (𝑥 ⊆ (𝐴 ∩ 𝑧) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
12 | 11 | rexbidv 3176 | . . . 4 ⊢ (𝑧 = 𝐵 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝑧) ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
13 | 9, 12 | rspc2v 3622 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
14 | 6, 13 | syl5com 31 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
15 | 14 | 3impib 1113 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∉ wnel 3043 ∀wral 3058 ∃wrex 3067 ∩ cin 3948 ⊆ wss 3949 ∅c0 4326 𝒫 cpw 4606 dom cdm 5682 ‘cfv 6553 fBascfbas 21281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fv 6561 df-fbas 21290 |
This theorem is referenced by: fbssfi 23769 fbncp 23771 fbun 23772 fbfinnfr 23773 trfbas2 23775 filin 23786 fgcl 23810 fbasrn 23816 |
Copyright terms: Public domain | W3C validator |