Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fbasssin | Structured version Visualization version GIF version |
Description: A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Jeff Hankins, 1-Dec-2010.) |
Ref | Expression |
---|---|
fbasssin | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6806 | . . . . . . 7 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas) | |
2 | isfbas2 22986 | . . . . . . 7 ⊢ (𝑋 ∈ dom fBas → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧))))) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧))))) |
4 | 3 | ibi 266 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧)))) |
5 | 4 | simprd 496 | . . . 4 ⊢ (𝐹 ∈ (fBas‘𝑋) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧))) |
6 | 5 | simp3d 1143 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧)) |
7 | ineq1 4139 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∩ 𝑧) = (𝐴 ∩ 𝑧)) | |
8 | 7 | sseq2d 3953 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ⊆ (𝑦 ∩ 𝑧) ↔ 𝑥 ⊆ (𝐴 ∩ 𝑧))) |
9 | 8 | rexbidv 3226 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧) ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝑧))) |
10 | ineq2 4140 | . . . . . 6 ⊢ (𝑧 = 𝐵 → (𝐴 ∩ 𝑧) = (𝐴 ∩ 𝐵)) | |
11 | 10 | sseq2d 3953 | . . . . 5 ⊢ (𝑧 = 𝐵 → (𝑥 ⊆ (𝐴 ∩ 𝑧) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
12 | 11 | rexbidv 3226 | . . . 4 ⊢ (𝑧 = 𝐵 → (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝑧) ↔ ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
13 | 9, 12 | rspc2v 3570 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝑦 ∩ 𝑧) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
14 | 6, 13 | syl5com 31 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
15 | 14 | 3impib 1115 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∉ wnel 3049 ∀wral 3064 ∃wrex 3065 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 dom cdm 5589 ‘cfv 6433 fBascfbas 20585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-fbas 20594 |
This theorem is referenced by: fbssfi 22988 fbncp 22990 fbun 22991 fbfinnfr 22992 trfbas2 22994 filin 23005 fgcl 23029 fbasrn 23035 |
Copyright terms: Public domain | W3C validator |