MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasssin Structured version   Visualization version   GIF version

Theorem fbasssin 22987
Description: A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Jeff Hankins, 1-Dec-2010.)
Assertion
Ref Expression
fbasssin ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑋

Proof of Theorem fbasssin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6806 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
2 isfbas2 22986 . . . . . . 7 (𝑋 ∈ dom fBas → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))))
31, 2syl 17 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))))
43ibi 266 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧))))
54simprd 496 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧)))
65simp3d 1143 . . 3 (𝐹 ∈ (fBas‘𝑋) → ∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧))
7 ineq1 4139 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝑧) = (𝐴𝑧))
87sseq2d 3953 . . . . 5 (𝑦 = 𝐴 → (𝑥 ⊆ (𝑦𝑧) ↔ 𝑥 ⊆ (𝐴𝑧)))
98rexbidv 3226 . . . 4 (𝑦 = 𝐴 → (∃𝑥𝐹 𝑥 ⊆ (𝑦𝑧) ↔ ∃𝑥𝐹 𝑥 ⊆ (𝐴𝑧)))
10 ineq2 4140 . . . . . 6 (𝑧 = 𝐵 → (𝐴𝑧) = (𝐴𝐵))
1110sseq2d 3953 . . . . 5 (𝑧 = 𝐵 → (𝑥 ⊆ (𝐴𝑧) ↔ 𝑥 ⊆ (𝐴𝐵)))
1211rexbidv 3226 . . . 4 (𝑧 = 𝐵 → (∃𝑥𝐹 𝑥 ⊆ (𝐴𝑧) ↔ ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
139, 12rspc2v 3570 . . 3 ((𝐴𝐹𝐵𝐹) → (∀𝑦𝐹𝑧𝐹𝑥𝐹 𝑥 ⊆ (𝑦𝑧) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
146, 13syl5com 31 . 2 (𝐹 ∈ (fBas‘𝑋) → ((𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵)))
15143impib 1115 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wnel 3049  wral 3064  wrex 3065  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  dom cdm 5589  cfv 6433  fBascfbas 20585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-fbas 20594
This theorem is referenced by:  fbssfi  22988  fbncp  22990  fbun  22991  fbfinnfr  22992  trfbas2  22994  filin  23005  fgcl  23029  fbasrn  23035
  Copyright terms: Public domain W3C validator