Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fbncp | Structured version Visualization version GIF version |
Description: A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
fbncp | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝐵 ∖ 𝐴) ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelfb 22890 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ ∅ ∈ 𝐹) |
3 | fbasssin 22895 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ (𝐵 ∖ 𝐴) ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴))) | |
4 | disjdif 4402 | . . . . . . . 8 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
5 | 4 | sseq2i 3946 | . . . . . . 7 ⊢ (𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) ↔ 𝑥 ⊆ ∅) |
6 | ss0 4329 | . . . . . . 7 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
7 | 5, 6 | sylbi 216 | . . . . . 6 ⊢ (𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) → 𝑥 = ∅) |
8 | eleq1 2826 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝐹 ↔ ∅ ∈ 𝐹)) | |
9 | 8 | biimpac 478 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 = ∅) → ∅ ∈ 𝐹) |
10 | 7, 9 | sylan2 592 | . . . . 5 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴))) → ∅ ∈ 𝐹) |
11 | 10 | rexlimiva 3209 | . . . 4 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) → ∅ ∈ 𝐹) |
12 | 3, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ (𝐵 ∖ 𝐴) ∈ 𝐹) → ∅ ∈ 𝐹) |
13 | 12 | 3expia 1119 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ((𝐵 ∖ 𝐴) ∈ 𝐹 → ∅ ∈ 𝐹)) |
14 | 2, 13 | mtod 197 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝐵 ∖ 𝐴) ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ‘cfv 6418 fBascfbas 20498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-fbas 20507 |
This theorem is referenced by: filconn 22942 fgtr 22949 ufilb 22965 ufilmax 22966 ufilen 22989 flimrest 23042 fclsrest 23083 cfilres 24365 relcmpcmet 24387 |
Copyright terms: Public domain | W3C validator |