| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fbncp | Structured version Visualization version GIF version | ||
| Description: A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| fbncp | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝐵 ∖ 𝐴) ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelfb 23725 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ ∅ ∈ 𝐹) |
| 3 | fbasssin 23730 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ (𝐵 ∖ 𝐴) ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴))) | |
| 4 | disjdif 4438 | . . . . . . . 8 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
| 5 | 4 | sseq2i 3979 | . . . . . . 7 ⊢ (𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) ↔ 𝑥 ⊆ ∅) |
| 6 | ss0 4368 | . . . . . . 7 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
| 7 | 5, 6 | sylbi 217 | . . . . . 6 ⊢ (𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) → 𝑥 = ∅) |
| 8 | eleq1 2817 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝐹 ↔ ∅ ∈ 𝐹)) | |
| 9 | 8 | biimpac 478 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 = ∅) → ∅ ∈ 𝐹) |
| 10 | 7, 9 | sylan2 593 | . . . . 5 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴))) → ∅ ∈ 𝐹) |
| 11 | 10 | rexlimiva 3127 | . . . 4 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) → ∅ ∈ 𝐹) |
| 12 | 3, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ (𝐵 ∖ 𝐴) ∈ 𝐹) → ∅ ∈ 𝐹) |
| 13 | 12 | 3expia 1121 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ((𝐵 ∖ 𝐴) ∈ 𝐹 → ∅ ∈ 𝐹)) |
| 14 | 2, 13 | mtod 198 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝐵 ∖ 𝐴) ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 ‘cfv 6514 fBascfbas 21259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-fbas 21268 |
| This theorem is referenced by: filconn 23777 fgtr 23784 ufilb 23800 ufilmax 23801 ufilen 23824 flimrest 23877 fclsrest 23918 cfilres 25203 relcmpcmet 25225 |
| Copyright terms: Public domain | W3C validator |