MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbncp Structured version   Visualization version   GIF version

Theorem fbncp 23862
Description: A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbncp ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ¬ (𝐵𝐴) ∈ 𝐹)

Proof of Theorem fbncp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nelfb 23854 . . 3 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹)
21adantr 480 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ¬ ∅ ∈ 𝐹)
3 fbasssin 23859 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹 ∧ (𝐵𝐴) ∈ 𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵𝐴)))
4 disjdif 4477 . . . . . . . 8 (𝐴 ∩ (𝐵𝐴)) = ∅
54sseq2i 4024 . . . . . . 7 (𝑥 ⊆ (𝐴 ∩ (𝐵𝐴)) ↔ 𝑥 ⊆ ∅)
6 ss0 4407 . . . . . . 7 (𝑥 ⊆ ∅ → 𝑥 = ∅)
75, 6sylbi 217 . . . . . 6 (𝑥 ⊆ (𝐴 ∩ (𝐵𝐴)) → 𝑥 = ∅)
8 eleq1 2826 . . . . . . 7 (𝑥 = ∅ → (𝑥𝐹 ↔ ∅ ∈ 𝐹))
98biimpac 478 . . . . . 6 ((𝑥𝐹𝑥 = ∅) → ∅ ∈ 𝐹)
107, 9sylan2 593 . . . . 5 ((𝑥𝐹𝑥 ⊆ (𝐴 ∩ (𝐵𝐴))) → ∅ ∈ 𝐹)
1110rexlimiva 3144 . . . 4 (∃𝑥𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵𝐴)) → ∅ ∈ 𝐹)
123, 11syl 17 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹 ∧ (𝐵𝐴) ∈ 𝐹) → ∅ ∈ 𝐹)
13123expia 1120 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ((𝐵𝐴) ∈ 𝐹 → ∅ ∈ 𝐹))
142, 13mtod 198 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ¬ (𝐵𝐴) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wrex 3067  cdif 3959  cin 3961  wss 3962  c0 4338  cfv 6562  fBascfbas 21369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fv 6570  df-fbas 21378
This theorem is referenced by:  filconn  23906  fgtr  23913  ufilb  23929  ufilmax  23930  ufilen  23953  flimrest  24006  fclsrest  24047  cfilres  25343  relcmpcmet  25365
  Copyright terms: Public domain W3C validator