MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbncp Structured version   Visualization version   GIF version

Theorem fbncp 22145
Description: A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbncp ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ¬ (𝐵𝐴) ∈ 𝐹)

Proof of Theorem fbncp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nelfb 22137 . . 3 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹)
21adantr 473 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ¬ ∅ ∈ 𝐹)
3 fbasssin 22142 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹 ∧ (𝐵𝐴) ∈ 𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵𝐴)))
4 disjdif 4302 . . . . . . . 8 (𝐴 ∩ (𝐵𝐴)) = ∅
54sseq2i 3885 . . . . . . 7 (𝑥 ⊆ (𝐴 ∩ (𝐵𝐴)) ↔ 𝑥 ⊆ ∅)
6 ss0 4236 . . . . . . 7 (𝑥 ⊆ ∅ → 𝑥 = ∅)
75, 6sylbi 209 . . . . . 6 (𝑥 ⊆ (𝐴 ∩ (𝐵𝐴)) → 𝑥 = ∅)
8 eleq1 2850 . . . . . . 7 (𝑥 = ∅ → (𝑥𝐹 ↔ ∅ ∈ 𝐹))
98biimpac 471 . . . . . 6 ((𝑥𝐹𝑥 = ∅) → ∅ ∈ 𝐹)
107, 9sylan2 583 . . . . 5 ((𝑥𝐹𝑥 ⊆ (𝐴 ∩ (𝐵𝐴))) → ∅ ∈ 𝐹)
1110rexlimiva 3223 . . . 4 (∃𝑥𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵𝐴)) → ∅ ∈ 𝐹)
123, 11syl 17 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹 ∧ (𝐵𝐴) ∈ 𝐹) → ∅ ∈ 𝐹)
13123expia 1101 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ((𝐵𝐴) ∈ 𝐹 → ∅ ∈ 𝐹))
142, 13mtod 190 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹) → ¬ (𝐵𝐴) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2048  wrex 3086  cdif 3825  cin 3827  wss 3828  c0 4177  cfv 6186  fBascfbas 20229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2747  ax-sep 5058  ax-nul 5065  ax-pow 5117  ax-pr 5184
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2756  df-cleq 2768  df-clel 2843  df-nfc 2915  df-ne 2965  df-nel 3071  df-ral 3090  df-rex 3091  df-rab 3094  df-v 3414  df-sbc 3681  df-csb 3786  df-dif 3831  df-un 3833  df-in 3835  df-ss 3842  df-nul 4178  df-if 4349  df-pw 4422  df-sn 4440  df-pr 4442  df-op 4446  df-uni 4711  df-br 4928  df-opab 4990  df-mpt 5007  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fv 6194  df-fbas 20238
This theorem is referenced by:  filconn  22189  fgtr  22196  ufilb  22212  ufilmax  22213  ufilen  22236  flimrest  22289  fclsrest  22330  cfilres  23596  relcmpcmet  23618
  Copyright terms: Public domain W3C validator