| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fbncp | Structured version Visualization version GIF version | ||
| Description: A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| fbncp | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝐵 ∖ 𝐴) ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelfb 23694 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ ∅ ∈ 𝐹) |
| 3 | fbasssin 23699 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ (𝐵 ∖ 𝐴) ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴))) | |
| 4 | disjdif 4431 | . . . . . . . 8 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
| 5 | 4 | sseq2i 3973 | . . . . . . 7 ⊢ (𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) ↔ 𝑥 ⊆ ∅) |
| 6 | ss0 4361 | . . . . . . 7 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
| 7 | 5, 6 | sylbi 217 | . . . . . 6 ⊢ (𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) → 𝑥 = ∅) |
| 8 | eleq1 2816 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝐹 ↔ ∅ ∈ 𝐹)) | |
| 9 | 8 | biimpac 478 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 = ∅) → ∅ ∈ 𝐹) |
| 10 | 7, 9 | sylan2 593 | . . . . 5 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴))) → ∅ ∈ 𝐹) |
| 11 | 10 | rexlimiva 3126 | . . . 4 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) → ∅ ∈ 𝐹) |
| 12 | 3, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ (𝐵 ∖ 𝐴) ∈ 𝐹) → ∅ ∈ 𝐹) |
| 13 | 12 | 3expia 1121 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ((𝐵 ∖ 𝐴) ∈ 𝐹 → ∅ ∈ 𝐹)) |
| 14 | 2, 13 | mtod 198 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝐵 ∖ 𝐴) ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3908 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 ‘cfv 6499 fBascfbas 21228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-fbas 21237 |
| This theorem is referenced by: filconn 23746 fgtr 23753 ufilb 23769 ufilmax 23770 ufilen 23793 flimrest 23846 fclsrest 23887 cfilres 25172 relcmpcmet 25194 |
| Copyright terms: Public domain | W3C validator |