![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fbncp | Structured version Visualization version GIF version |
Description: A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
fbncp | ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝐵 ∖ 𝐴) ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelfb 23854 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ ∅ ∈ 𝐹) |
3 | fbasssin 23859 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ (𝐵 ∖ 𝐴) ∈ 𝐹) → ∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴))) | |
4 | disjdif 4477 | . . . . . . . 8 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
5 | 4 | sseq2i 4024 | . . . . . . 7 ⊢ (𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) ↔ 𝑥 ⊆ ∅) |
6 | ss0 4407 | . . . . . . 7 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
7 | 5, 6 | sylbi 217 | . . . . . 6 ⊢ (𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) → 𝑥 = ∅) |
8 | eleq1 2826 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝐹 ↔ ∅ ∈ 𝐹)) | |
9 | 8 | biimpac 478 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 = ∅) → ∅ ∈ 𝐹) |
10 | 7, 9 | sylan2 593 | . . . . 5 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴))) → ∅ ∈ 𝐹) |
11 | 10 | rexlimiva 3144 | . . . 4 ⊢ (∃𝑥 ∈ 𝐹 𝑥 ⊆ (𝐴 ∩ (𝐵 ∖ 𝐴)) → ∅ ∈ 𝐹) |
12 | 3, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ (𝐵 ∖ 𝐴) ∈ 𝐹) → ∅ ∈ 𝐹) |
13 | 12 | 3expia 1120 | . 2 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ((𝐵 ∖ 𝐴) ∈ 𝐹 → ∅ ∈ 𝐹)) |
14 | 2, 13 | mtod 198 | 1 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴 ∈ 𝐹) → ¬ (𝐵 ∖ 𝐴) ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 ∖ cdif 3959 ∩ cin 3961 ⊆ wss 3962 ∅c0 4338 ‘cfv 6562 fBascfbas 21369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fv 6570 df-fbas 21378 |
This theorem is referenced by: filconn 23906 fgtr 23913 ufilb 23929 ufilmax 23930 ufilen 23953 flimrest 24006 fclsrest 24047 cfilres 25343 relcmpcmet 25365 |
Copyright terms: Public domain | W3C validator |