Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdivmptfv Structured version   Visualization version   GIF version

Theorem fdivmptfv 47385
Description: The function value of a quotient of two functions into the complex numbers. (Contributed by AV, 19-May-2020.)
Assertion
Ref Expression
fdivmptfv (((𝐹:π΄βŸΆβ„‚ ∧ 𝐺:π΄βŸΆβ„‚ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) β†’ ((𝐹 /f 𝐺)β€˜π‘‹) = ((πΉβ€˜π‘‹) / (πΊβ€˜π‘‹)))

Proof of Theorem fdivmptfv
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 fdivmpt 47380 . . 3 ((𝐹:π΄βŸΆβ„‚ ∧ 𝐺:π΄βŸΆβ„‚ ∧ 𝐴 ∈ 𝑉) β†’ (𝐹 /f 𝐺) = (π‘₯ ∈ (𝐺 supp 0) ↦ ((πΉβ€˜π‘₯) / (πΊβ€˜π‘₯))))
21adantr 480 . 2 (((𝐹:π΄βŸΆβ„‚ ∧ 𝐺:π΄βŸΆβ„‚ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) β†’ (𝐹 /f 𝐺) = (π‘₯ ∈ (𝐺 supp 0) ↦ ((πΉβ€˜π‘₯) / (πΊβ€˜π‘₯))))
3 fveq2 6881 . . . 4 (π‘₯ = 𝑋 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘‹))
4 fveq2 6881 . . . 4 (π‘₯ = 𝑋 β†’ (πΊβ€˜π‘₯) = (πΊβ€˜π‘‹))
53, 4oveq12d 7419 . . 3 (π‘₯ = 𝑋 β†’ ((πΉβ€˜π‘₯) / (πΊβ€˜π‘₯)) = ((πΉβ€˜π‘‹) / (πΊβ€˜π‘‹)))
65adantl 481 . 2 ((((𝐹:π΄βŸΆβ„‚ ∧ 𝐺:π΄βŸΆβ„‚ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) ∧ π‘₯ = 𝑋) β†’ ((πΉβ€˜π‘₯) / (πΊβ€˜π‘₯)) = ((πΉβ€˜π‘‹) / (πΊβ€˜π‘‹)))
7 simpr 484 . 2 (((𝐹:π΄βŸΆβ„‚ ∧ 𝐺:π΄βŸΆβ„‚ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) β†’ 𝑋 ∈ (𝐺 supp 0))
8 ovexd 7436 . 2 (((𝐹:π΄βŸΆβ„‚ ∧ 𝐺:π΄βŸΆβ„‚ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) β†’ ((πΉβ€˜π‘‹) / (πΊβ€˜π‘‹)) ∈ V)
92, 6, 7, 8fvmptd 6995 1 (((𝐹:π΄βŸΆβ„‚ ∧ 𝐺:π΄βŸΆβ„‚ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) β†’ ((𝐹 /f 𝐺)β€˜π‘‹) = ((πΉβ€˜π‘‹) / (πΊβ€˜π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  Vcvv 3466   ↦ cmpt 5221  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401   supp csupp 8140  β„‚cc 11103  0cc0 11105   / cdiv 11867   /f cfdiv 47377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-supp 8141  df-fdiv 47378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator