Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refdivmptfv Structured version   Visualization version   GIF version

Theorem refdivmptfv 45892
Description: The function value of a quotient of two functions into the real numbers. (Contributed by AV, 19-May-2020.)
Assertion
Ref Expression
refdivmptfv (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹𝑋) / (𝐺𝑋)))

Proof of Theorem refdivmptfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ)
2 ax-resscn 10928 . . . . . . 7 ℝ ⊆ ℂ
32a1i 11 . . . . . 6 (𝐹:𝐴⟶ℝ → ℝ ⊆ ℂ)
41, 3fssd 6618 . . . . 5 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ)
5 id 22 . . . . . 6 (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℝ)
62a1i 11 . . . . . 6 (𝐺:𝐴⟶ℝ → ℝ ⊆ ℂ)
75, 6fssd 6618 . . . . 5 (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℂ)
8 id 22 . . . . 5 (𝐴𝑉𝐴𝑉)
94, 7, 83anim123i 1150 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉))
10 fdivmpt 45886 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
119, 10syl 17 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
1211adantr 481 . 2 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
13 fveq2 6774 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
14 fveq2 6774 . . . 4 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1513, 14oveq12d 7293 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥) / (𝐺𝑥)) = ((𝐹𝑋) / (𝐺𝑋)))
1615adantl 482 . 2 ((((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) ∧ 𝑥 = 𝑋) → ((𝐹𝑥) / (𝐺𝑥)) = ((𝐹𝑋) / (𝐺𝑋)))
17 simpr 485 . 2 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → 𝑋 ∈ (𝐺 supp 0))
18 ovexd 7310 . 2 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹𝑋) / (𝐺𝑋)) ∈ V)
1912, 16, 17, 18fvmptd 6882 1 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹𝑋) / (𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275   supp csupp 7977  cc 10869  cr 10870  0cc0 10871   / cdiv 11632   /f cfdiv 45883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-supp 7978  df-fdiv 45884
This theorem is referenced by:  elbigolo1  45903
  Copyright terms: Public domain W3C validator