| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refdivmptfv | Structured version Visualization version GIF version | ||
| Description: The function value of a quotient of two functions into the real numbers. (Contributed by AV, 19-May-2020.) |
| Ref | Expression |
|---|---|
| refdivmptfv | ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹‘𝑋) / (𝐺‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ) | |
| 2 | ax-resscn 11193 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → ℝ ⊆ ℂ) |
| 4 | 1, 3 | fssd 6732 | . . . . 5 ⊢ (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ) |
| 5 | id 22 | . . . . . 6 ⊢ (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℝ) | |
| 6 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐺:𝐴⟶ℝ → ℝ ⊆ ℂ) |
| 7 | 5, 6 | fssd 6732 | . . . . 5 ⊢ (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℂ) |
| 8 | id 22 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
| 9 | 4, 7, 8 | 3anim123i 1151 | . . . 4 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉)) |
| 10 | fdivmpt 48395 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) |
| 12 | 11 | adantr 480 | . 2 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) |
| 13 | fveq2 6885 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 14 | fveq2 6885 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
| 15 | 13, 14 | oveq12d 7430 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) / (𝐺‘𝑥)) = ((𝐹‘𝑋) / (𝐺‘𝑋))) |
| 16 | 15 | adantl 481 | . 2 ⊢ ((((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) ∧ 𝑥 = 𝑋) → ((𝐹‘𝑥) / (𝐺‘𝑥)) = ((𝐹‘𝑋) / (𝐺‘𝑋))) |
| 17 | simpr 484 | . 2 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → 𝑋 ∈ (𝐺 supp 0)) | |
| 18 | ovexd 7447 | . 2 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ V) | |
| 19 | 12, 16, 17, 18 | fvmptd 7002 | 1 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹‘𝑋) / (𝐺‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 ↦ cmpt 5205 ⟶wf 6536 ‘cfv 6540 (class class class)co 7412 supp csupp 8166 ℂcc 11134 ℝcr 11135 0cc0 11136 / cdiv 11901 /f cfdiv 48392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 ax-resscn 11193 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-supp 8167 df-fdiv 48393 |
| This theorem is referenced by: elbigolo1 48412 |
| Copyright terms: Public domain | W3C validator |