Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refdivmptfv Structured version   Visualization version   GIF version

Theorem refdivmptfv 47934
Description: The function value of a quotient of two functions into the real numbers. (Contributed by AV, 19-May-2020.)
Assertion
Ref Expression
refdivmptfv (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹𝑋) / (𝐺𝑋)))

Proof of Theorem refdivmptfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ)
2 ax-resscn 11215 . . . . . . 7 ℝ ⊆ ℂ
32a1i 11 . . . . . 6 (𝐹:𝐴⟶ℝ → ℝ ⊆ ℂ)
41, 3fssd 6745 . . . . 5 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ)
5 id 22 . . . . . 6 (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℝ)
62a1i 11 . . . . . 6 (𝐺:𝐴⟶ℝ → ℝ ⊆ ℂ)
75, 6fssd 6745 . . . . 5 (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℂ)
8 id 22 . . . . 5 (𝐴𝑉𝐴𝑉)
94, 7, 83anim123i 1148 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉))
10 fdivmpt 47928 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
119, 10syl 17 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
1211adantr 479 . 2 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
13 fveq2 6901 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
14 fveq2 6901 . . . 4 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1513, 14oveq12d 7442 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥) / (𝐺𝑥)) = ((𝐹𝑋) / (𝐺𝑋)))
1615adantl 480 . 2 ((((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) ∧ 𝑥 = 𝑋) → ((𝐹𝑥) / (𝐺𝑥)) = ((𝐹𝑋) / (𝐺𝑋)))
17 simpr 483 . 2 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → 𝑋 ∈ (𝐺 supp 0))
18 ovexd 7459 . 2 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹𝑋) / (𝐺𝑋)) ∈ V)
1912, 16, 17, 18fvmptd 7016 1 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹𝑋) / (𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  Vcvv 3462  wss 3947  cmpt 5236  wf 6550  cfv 6554  (class class class)co 7424   supp csupp 8174  cc 11156  cr 11157  0cc0 11158   / cdiv 11921   /f cfdiv 47925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746  ax-resscn 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-supp 8175  df-fdiv 47926
This theorem is referenced by:  elbigolo1  47945
  Copyright terms: Public domain W3C validator