| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refdivmptfv | Structured version Visualization version GIF version | ||
| Description: The function value of a quotient of two functions into the real numbers. (Contributed by AV, 19-May-2020.) |
| Ref | Expression |
|---|---|
| refdivmptfv | ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹‘𝑋) / (𝐺‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ) | |
| 2 | ax-resscn 11132 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → ℝ ⊆ ℂ) |
| 4 | 1, 3 | fssd 6708 | . . . . 5 ⊢ (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ) |
| 5 | id 22 | . . . . . 6 ⊢ (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℝ) | |
| 6 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐺:𝐴⟶ℝ → ℝ ⊆ ℂ) |
| 7 | 5, 6 | fssd 6708 | . . . . 5 ⊢ (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℂ) |
| 8 | id 22 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
| 9 | 4, 7, 8 | 3anim123i 1151 | . . . 4 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉)) |
| 10 | fdivmpt 48533 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) |
| 12 | 11 | adantr 480 | . 2 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) |
| 13 | fveq2 6861 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 14 | fveq2 6861 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) | |
| 15 | 13, 14 | oveq12d 7408 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) / (𝐺‘𝑥)) = ((𝐹‘𝑋) / (𝐺‘𝑋))) |
| 16 | 15 | adantl 481 | . 2 ⊢ ((((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) ∧ 𝑥 = 𝑋) → ((𝐹‘𝑥) / (𝐺‘𝑥)) = ((𝐹‘𝑋) / (𝐺‘𝑋))) |
| 17 | simpr 484 | . 2 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → 𝑋 ∈ (𝐺 supp 0)) | |
| 18 | ovexd 7425 | . 2 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹‘𝑋) / (𝐺‘𝑋)) ∈ V) | |
| 19 | 12, 16, 17, 18 | fvmptd 6978 | 1 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹‘𝑋) / (𝐺‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 ℂcc 11073 ℝcr 11074 0cc0 11075 / cdiv 11842 /f cfdiv 48530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-supp 8143 df-fdiv 48531 |
| This theorem is referenced by: elbigolo1 48550 |
| Copyright terms: Public domain | W3C validator |