Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refdivmptfv Structured version   Visualization version   GIF version

Theorem refdivmptfv 48468
Description: The function value of a quotient of two functions into the real numbers. (Contributed by AV, 19-May-2020.)
Assertion
Ref Expression
refdivmptfv (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹𝑋) / (𝐺𝑋)))

Proof of Theorem refdivmptfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ)
2 ax-resscn 11143 . . . . . . 7 ℝ ⊆ ℂ
32a1i 11 . . . . . 6 (𝐹:𝐴⟶ℝ → ℝ ⊆ ℂ)
41, 3fssd 6712 . . . . 5 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ)
5 id 22 . . . . . 6 (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℝ)
62a1i 11 . . . . . 6 (𝐺:𝐴⟶ℝ → ℝ ⊆ ℂ)
75, 6fssd 6712 . . . . 5 (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℂ)
8 id 22 . . . . 5 (𝐴𝑉𝐴𝑉)
94, 7, 83anim123i 1151 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉))
10 fdivmpt 48462 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
119, 10syl 17 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
1211adantr 480 . 2 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
13 fveq2 6865 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
14 fveq2 6865 . . . 4 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
1513, 14oveq12d 7412 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥) / (𝐺𝑥)) = ((𝐹𝑋) / (𝐺𝑋)))
1615adantl 481 . 2 ((((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) ∧ 𝑥 = 𝑋) → ((𝐹𝑥) / (𝐺𝑥)) = ((𝐹𝑋) / (𝐺𝑋)))
17 simpr 484 . 2 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → 𝑋 ∈ (𝐺 supp 0))
18 ovexd 7429 . 2 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹𝑋) / (𝐺𝑋)) ∈ V)
1912, 16, 17, 18fvmptd 6982 1 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑋 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑋) = ((𝐹𝑋) / (𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3455  wss 3922  cmpt 5196  wf 6515  cfv 6519  (class class class)co 7394   supp csupp 8148  cc 11084  cr 11085  0cc0 11086   / cdiv 11851   /f cfdiv 48459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718  ax-resscn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-supp 8149  df-fdiv 48460
This theorem is referenced by:  elbigolo1  48479
  Copyright terms: Public domain W3C validator