Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdivmpt Structured version   Visualization version   GIF version

Theorem fdivmpt 48520
Description: The quotient of two functions into the complex numbers as mapping. (Contributed by AV, 16-May-2020.)
Assertion
Ref Expression
fdivmpt ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉

Proof of Theorem fdivmpt
StepHypRef Expression
1 fex 7218 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐹 ∈ V)
213adant2 1131 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐹 ∈ V)
3 fex 7218 . . . 4 ((𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐺 ∈ V)
433adant1 1130 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐺 ∈ V)
5 fdivval 48519 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 /f 𝐺) = ((𝐹f / 𝐺) ↾ (𝐺 supp 0)))
6 offres 7982 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → ((𝐹f / 𝐺) ↾ (𝐺 supp 0)) = ((𝐹 ↾ (𝐺 supp 0)) ∘f / (𝐺 ↾ (𝐺 supp 0))))
75, 6eqtrd 2770 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 /f 𝐺) = ((𝐹 ↾ (𝐺 supp 0)) ∘f / (𝐺 ↾ (𝐺 supp 0))))
82, 4, 7syl2anc 584 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = ((𝐹 ↾ (𝐺 supp 0)) ∘f / (𝐺 ↾ (𝐺 supp 0))))
9 ffn 6706 . . . . 5 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
1093ad2ant1 1133 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐹 Fn 𝐴)
11 suppssdm 8176 . . . . 5 (𝐺 supp 0) ⊆ dom 𝐺
12 fdm 6715 . . . . . . 7 (𝐺:𝐴⟶ℂ → dom 𝐺 = 𝐴)
1312eqcomd 2741 . . . . . 6 (𝐺:𝐴⟶ℂ → 𝐴 = dom 𝐺)
14133ad2ant2 1134 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐴 = dom 𝐺)
1511, 14sseqtrrid 4002 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐺 supp 0) ⊆ 𝐴)
16 fnssres 6661 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐺 supp 0) ⊆ 𝐴) → (𝐹 ↾ (𝐺 supp 0)) Fn (𝐺 supp 0))
1710, 15, 16syl2anc 584 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 ↾ (𝐺 supp 0)) Fn (𝐺 supp 0))
18 ffn 6706 . . . . 5 (𝐺:𝐴⟶ℂ → 𝐺 Fn 𝐴)
19183ad2ant2 1134 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐺 Fn 𝐴)
20 fnssres 6661 . . . 4 ((𝐺 Fn 𝐴 ∧ (𝐺 supp 0) ⊆ 𝐴) → (𝐺 ↾ (𝐺 supp 0)) Fn (𝐺 supp 0))
2119, 15, 20syl2anc 584 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐺 ↾ (𝐺 supp 0)) Fn (𝐺 supp 0))
22 ovexd 7440 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐺 supp 0) ∈ V)
23 inidm 4202 . . 3 ((𝐺 supp 0) ∩ (𝐺 supp 0)) = (𝐺 supp 0)
24 fvres 6895 . . . 4 (𝑥 ∈ (𝐺 supp 0) → ((𝐹 ↾ (𝐺 supp 0))‘𝑥) = (𝐹𝑥))
2524adantl 481 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → ((𝐹 ↾ (𝐺 supp 0))‘𝑥) = (𝐹𝑥))
26 fvres 6895 . . . 4 (𝑥 ∈ (𝐺 supp 0) → ((𝐺 ↾ (𝐺 supp 0))‘𝑥) = (𝐺𝑥))
2726adantl 481 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → ((𝐺 ↾ (𝐺 supp 0))‘𝑥) = (𝐺𝑥))
2817, 21, 22, 22, 23, 25, 27offval 7680 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → ((𝐹 ↾ (𝐺 supp 0)) ∘f / (𝐺 ↾ (𝐺 supp 0))) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
298, 28eqtrd 2770 1 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  cmpt 5201  dom cdm 5654  cres 5656   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  f cof 7669   supp csupp 8159  cc 11127  0cc0 11129   / cdiv 11894   /f cfdiv 48517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-supp 8160  df-fdiv 48518
This theorem is referenced by:  fdivmptf  48521  refdivmptf  48522  fdivmptfv  48525  refdivmptfv  48526
  Copyright terms: Public domain W3C validator