Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdivmpt Structured version   Visualization version   GIF version

Theorem fdivmpt 43359
Description: The quotient of two functions into the complex numbers as mapping. (Contributed by AV, 16-May-2020.)
Assertion
Ref Expression
fdivmpt ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉

Proof of Theorem fdivmpt
StepHypRef Expression
1 fex 6763 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐹 ∈ V)
213adant2 1122 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐹 ∈ V)
3 fex 6763 . . . 4 ((𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐺 ∈ V)
433adant1 1121 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐺 ∈ V)
5 fdivval 43358 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 /f 𝐺) = ((𝐹𝑓 / 𝐺) ↾ (𝐺 supp 0)))
6 offres 7442 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → ((𝐹𝑓 / 𝐺) ↾ (𝐺 supp 0)) = ((𝐹 ↾ (𝐺 supp 0)) ∘𝑓 / (𝐺 ↾ (𝐺 supp 0))))
75, 6eqtrd 2814 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 /f 𝐺) = ((𝐹 ↾ (𝐺 supp 0)) ∘𝑓 / (𝐺 ↾ (𝐺 supp 0))))
82, 4, 7syl2anc 579 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = ((𝐹 ↾ (𝐺 supp 0)) ∘𝑓 / (𝐺 ↾ (𝐺 supp 0))))
9 ffn 6293 . . . . 5 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
1093ad2ant1 1124 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐹 Fn 𝐴)
11 suppssdm 7591 . . . . 5 (𝐺 supp 0) ⊆ dom 𝐺
12 fdm 6301 . . . . . . 7 (𝐺:𝐴⟶ℂ → dom 𝐺 = 𝐴)
1312eqcomd 2784 . . . . . 6 (𝐺:𝐴⟶ℂ → 𝐴 = dom 𝐺)
14133ad2ant2 1125 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐴 = dom 𝐺)
1511, 14syl5sseqr 3873 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐺 supp 0) ⊆ 𝐴)
16 fnssres 6252 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐺 supp 0) ⊆ 𝐴) → (𝐹 ↾ (𝐺 supp 0)) Fn (𝐺 supp 0))
1710, 15, 16syl2anc 579 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 ↾ (𝐺 supp 0)) Fn (𝐺 supp 0))
18 ffn 6293 . . . . 5 (𝐺:𝐴⟶ℂ → 𝐺 Fn 𝐴)
19183ad2ant2 1125 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐺 Fn 𝐴)
20 fnssres 6252 . . . 4 ((𝐺 Fn 𝐴 ∧ (𝐺 supp 0) ⊆ 𝐴) → (𝐺 ↾ (𝐺 supp 0)) Fn (𝐺 supp 0))
2119, 15, 20syl2anc 579 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐺 ↾ (𝐺 supp 0)) Fn (𝐺 supp 0))
22 ovexd 6958 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐺 supp 0) ∈ V)
23 inidm 4043 . . 3 ((𝐺 supp 0) ∩ (𝐺 supp 0)) = (𝐺 supp 0)
24 fvres 6467 . . . 4 (𝑥 ∈ (𝐺 supp 0) → ((𝐹 ↾ (𝐺 supp 0))‘𝑥) = (𝐹𝑥))
2524adantl 475 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → ((𝐹 ↾ (𝐺 supp 0))‘𝑥) = (𝐹𝑥))
26 fvres 6467 . . . 4 (𝑥 ∈ (𝐺 supp 0) → ((𝐺 ↾ (𝐺 supp 0))‘𝑥) = (𝐺𝑥))
2726adantl 475 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → ((𝐺 ↾ (𝐺 supp 0))‘𝑥) = (𝐺𝑥))
2817, 21, 22, 22, 23, 25, 27offval 7183 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → ((𝐹 ↾ (𝐺 supp 0)) ∘𝑓 / (𝐺 ↾ (𝐺 supp 0))) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
298, 28eqtrd 2814 1 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  Vcvv 3398  wss 3792  cmpt 4967  dom cdm 5357  cres 5359   Fn wfn 6132  wf 6133  cfv 6137  (class class class)co 6924  𝑓 cof 7174   supp csupp 7578  cc 10272  0cc0 10274   / cdiv 11034   /f cfdiv 43356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-supp 7579  df-fdiv 43357
This theorem is referenced by:  fdivmptf  43360  refdivmptf  43361  fdivmptfv  43364  refdivmptfv  43365
  Copyright terms: Public domain W3C validator