Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdivmpt Structured version   Visualization version   GIF version

Theorem fdivmpt 46145
Description: The quotient of two functions into the complex numbers as mapping. (Contributed by AV, 16-May-2020.)
Assertion
Ref Expression
fdivmpt ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉

Proof of Theorem fdivmpt
StepHypRef Expression
1 fex 7139 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐹 ∈ V)
213adant2 1130 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐹 ∈ V)
3 fex 7139 . . . 4 ((𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐺 ∈ V)
433adant1 1129 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐺 ∈ V)
5 fdivval 46144 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 /f 𝐺) = ((𝐹f / 𝐺) ↾ (𝐺 supp 0)))
6 offres 7869 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → ((𝐹f / 𝐺) ↾ (𝐺 supp 0)) = ((𝐹 ↾ (𝐺 supp 0)) ∘f / (𝐺 ↾ (𝐺 supp 0))))
75, 6eqtrd 2777 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 /f 𝐺) = ((𝐹 ↾ (𝐺 supp 0)) ∘f / (𝐺 ↾ (𝐺 supp 0))))
82, 4, 7syl2anc 584 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = ((𝐹 ↾ (𝐺 supp 0)) ∘f / (𝐺 ↾ (𝐺 supp 0))))
9 ffn 6635 . . . . 5 (𝐹:𝐴⟶ℂ → 𝐹 Fn 𝐴)
1093ad2ant1 1132 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐹 Fn 𝐴)
11 suppssdm 8038 . . . . 5 (𝐺 supp 0) ⊆ dom 𝐺
12 fdm 6644 . . . . . . 7 (𝐺:𝐴⟶ℂ → dom 𝐺 = 𝐴)
1312eqcomd 2743 . . . . . 6 (𝐺:𝐴⟶ℂ → 𝐴 = dom 𝐺)
14133ad2ant2 1133 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐴 = dom 𝐺)
1511, 14sseqtrrid 3983 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐺 supp 0) ⊆ 𝐴)
16 fnssres 6591 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐺 supp 0) ⊆ 𝐴) → (𝐹 ↾ (𝐺 supp 0)) Fn (𝐺 supp 0))
1710, 15, 16syl2anc 584 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 ↾ (𝐺 supp 0)) Fn (𝐺 supp 0))
18 ffn 6635 . . . . 5 (𝐺:𝐴⟶ℂ → 𝐺 Fn 𝐴)
19183ad2ant2 1133 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐺 Fn 𝐴)
20 fnssres 6591 . . . 4 ((𝐺 Fn 𝐴 ∧ (𝐺 supp 0) ⊆ 𝐴) → (𝐺 ↾ (𝐺 supp 0)) Fn (𝐺 supp 0))
2119, 15, 20syl2anc 584 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐺 ↾ (𝐺 supp 0)) Fn (𝐺 supp 0))
22 ovexd 7348 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐺 supp 0) ∈ V)
23 inidm 4162 . . 3 ((𝐺 supp 0) ∩ (𝐺 supp 0)) = (𝐺 supp 0)
24 fvres 6828 . . . 4 (𝑥 ∈ (𝐺 supp 0) → ((𝐹 ↾ (𝐺 supp 0))‘𝑥) = (𝐹𝑥))
2524adantl 482 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → ((𝐹 ↾ (𝐺 supp 0))‘𝑥) = (𝐹𝑥))
26 fvres 6828 . . . 4 (𝑥 ∈ (𝐺 supp 0) → ((𝐺 ↾ (𝐺 supp 0))‘𝑥) = (𝐺𝑥))
2726adantl 482 . . 3 (((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → ((𝐺 ↾ (𝐺 supp 0))‘𝑥) = (𝐺𝑥))
2817, 21, 22, 22, 23, 25, 27offval 7580 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → ((𝐹 ↾ (𝐺 supp 0)) ∘f / (𝐺 ↾ (𝐺 supp 0))) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
298, 28eqtrd 2777 1 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3441  wss 3896  cmpt 5168  dom cdm 5605  cres 5607   Fn wfn 6458  wf 6459  cfv 6463  (class class class)co 7313  f cof 7569   supp csupp 8022  cc 10939  0cc0 10941   / cdiv 11702   /f cfdiv 46142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pr 5365  ax-un 7626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-ov 7316  df-oprab 7317  df-mpo 7318  df-of 7571  df-supp 8023  df-fdiv 46143
This theorem is referenced by:  fdivmptf  46146  refdivmptf  46147  fdivmptfv  46150  refdivmptfv  46151
  Copyright terms: Public domain W3C validator