Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refdivpm Structured version   Visualization version   GIF version

Theorem refdivpm 45778
Description: The quotient of two functions into the real numbers is a partial function. (Contributed by AV, 16-May-2020.)
Assertion
Ref Expression
refdivpm ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) ∈ (ℝ ↑pm 𝐴))

Proof of Theorem refdivpm
StepHypRef Expression
1 reex 10893 . . 3 ℝ ∈ V
21a1i 11 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → ℝ ∈ V)
3 simp3 1136 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → 𝐴𝑉)
4 refdivmptf 45776 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ)
5 suppssdm 7964 . . 3 (𝐺 supp 0) ⊆ dom 𝐺
6 fdm 6593 . . . . 5 (𝐺:𝐴⟶ℝ → dom 𝐺 = 𝐴)
76eqcomd 2744 . . . 4 (𝐺:𝐴⟶ℝ → 𝐴 = dom 𝐺)
873ad2ant2 1132 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → 𝐴 = dom 𝐺)
95, 8sseqtrrid 3970 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐺 supp 0) ⊆ 𝐴)
10 elpm2r 8591 . 2 (((ℝ ∈ V ∧ 𝐴𝑉) ∧ ((𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ ∧ (𝐺 supp 0) ⊆ 𝐴)) → (𝐹 /f 𝐺) ∈ (ℝ ↑pm 𝐴))
112, 3, 4, 9, 10syl22anc 835 1 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) ∈ (ℝ ↑pm 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  dom cdm 5580  wf 6414  (class class class)co 7255   supp csupp 7948  pm cpm 8574  cr 10801  0cc0 10802   /f cfdiv 45771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-supp 7949  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-fdiv 45772
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator