MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsopn Structured version   Visualization version   GIF version

Theorem fclsopn 23957
Description: Write the cluster point condition in terms of open sets. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsopn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝑜,𝐹,𝑠   𝑜,𝐽,𝑠   𝑜,𝑋,𝑠

Proof of Theorem fclsopn
StepHypRef Expression
1 isfcls2 23956 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
2 filn0 23805 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
32adantl 481 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ≠ ∅)
4 r19.2z 4475 . . . . . 6 ((𝐹 ≠ ∅ ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))
54ex 412 . . . . 5 (𝐹 ≠ ∅ → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
63, 5syl 17 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
7 topontop 22856 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
87ad2antrr 726 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝐽 ∈ Top)
9 filelss 23795 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠𝑋)
109adantll 714 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑠𝑋)
11 toponuni 22857 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1211ad2antrr 726 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑋 = 𝐽)
1310, 12sseqtrd 4000 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑠 𝐽)
14 eqid 2736 . . . . . . . . 9 𝐽 = 𝐽
1514clsss3 23002 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑠 𝐽) → ((cls‘𝐽)‘𝑠) ⊆ 𝐽)
168, 13, 15syl2anc 584 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → ((cls‘𝐽)‘𝑠) ⊆ 𝐽)
1716, 12sseqtrrd 4001 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → ((cls‘𝐽)‘𝑠) ⊆ 𝑋)
1817sseld 3962 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
1918rexlimdva 3142 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
206, 19syld 47 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
2120pm4.71rd 562 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ (𝐴𝑋 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
227ad3antrrr 730 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐽 ∈ Top)
2313adantlr 715 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝑠 𝐽)
24 simplr 768 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐴𝑋)
2511ad3antrrr 730 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝑋 = 𝐽)
2624, 25eleqtrd 2837 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐴 𝐽)
2714elcls 23016 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑠 𝐽𝐴 𝐽) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
2822, 23, 26, 27syl3anc 1373 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
2928ralbidva 3162 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
30 ralcom 3274 . . . . 5 (∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅))
31 r19.21v 3166 . . . . . 6 (∀𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3231ralbii 3083 . . . . 5 (∀𝑜𝐽𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3330, 32bitri 275 . . . 4 (∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3429, 33bitrdi 287 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
3534pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
361, 21, 353bitrd 305 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  cin 3930  wss 3931  c0 4313   cuni 4888  cfv 6536  (class class class)co 7410  Topctop 22836  TopOnctopon 22853  clsccl 22961  Filcfil 23788   fClus cfcls 23879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-fbas 21317  df-top 22837  df-topon 22854  df-cld 22962  df-ntr 22963  df-cls 22964  df-fil 23789  df-fcls 23884
This theorem is referenced by:  fclsopni  23958  fclselbas  23959  fclsnei  23962  fclsbas  23964  fclsss1  23965  fclsrest  23967  fclscf  23968  isfcf  23977
  Copyright terms: Public domain W3C validator