MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsopn Structured version   Visualization version   GIF version

Theorem fclsopn 24043
Description: Write the cluster point condition in terms of open sets. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsopn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝑜,𝐹,𝑠   𝑜,𝐽,𝑠   𝑜,𝑋,𝑠

Proof of Theorem fclsopn
StepHypRef Expression
1 isfcls2 24042 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
2 filn0 23891 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
32adantl 481 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ≠ ∅)
4 r19.2z 4518 . . . . . 6 ((𝐹 ≠ ∅ ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))
54ex 412 . . . . 5 (𝐹 ≠ ∅ → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
63, 5syl 17 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
7 topontop 22940 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
87ad2antrr 725 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝐽 ∈ Top)
9 filelss 23881 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠𝑋)
109adantll 713 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑠𝑋)
11 toponuni 22941 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1211ad2antrr 725 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑋 = 𝐽)
1310, 12sseqtrd 4049 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑠 𝐽)
14 eqid 2740 . . . . . . . . 9 𝐽 = 𝐽
1514clsss3 23088 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑠 𝐽) → ((cls‘𝐽)‘𝑠) ⊆ 𝐽)
168, 13, 15syl2anc 583 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → ((cls‘𝐽)‘𝑠) ⊆ 𝐽)
1716, 12sseqtrrd 4050 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → ((cls‘𝐽)‘𝑠) ⊆ 𝑋)
1817sseld 4007 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
1918rexlimdva 3161 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
206, 19syld 47 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
2120pm4.71rd 562 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ (𝐴𝑋 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
227ad3antrrr 729 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐽 ∈ Top)
2313adantlr 714 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝑠 𝐽)
24 simplr 768 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐴𝑋)
2511ad3antrrr 729 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝑋 = 𝐽)
2624, 25eleqtrd 2846 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐴 𝐽)
2714elcls 23102 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑠 𝐽𝐴 𝐽) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
2822, 23, 26, 27syl3anc 1371 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
2928ralbidva 3182 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
30 ralcom 3295 . . . . 5 (∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅))
31 r19.21v 3186 . . . . . 6 (∀𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3231ralbii 3099 . . . . 5 (∀𝑜𝐽𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3330, 32bitri 275 . . . 4 (∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3429, 33bitrdi 287 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
3534pm5.32da 578 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
361, 21, 353bitrd 305 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cin 3975  wss 3976  c0 4352   cuni 4931  cfv 6573  (class class class)co 7448  Topctop 22920  TopOnctopon 22937  clsccl 23047  Filcfil 23874   fClus cfcls 23965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-fbas 21384  df-top 22921  df-topon 22938  df-cld 23048  df-ntr 23049  df-cls 23050  df-fil 23875  df-fcls 23970
This theorem is referenced by:  fclsopni  24044  fclselbas  24045  fclsnei  24048  fclsbas  24050  fclsss1  24051  fclsrest  24053  fclscf  24054  isfcf  24063
  Copyright terms: Public domain W3C validator