Proof of Theorem fclsopn
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | isfcls2 24021 | . 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) | 
| 2 |  | filn0 23870 | . . . . . 6
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) | 
| 3 | 2 | adantl 481 | . . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ≠ ∅) | 
| 4 |  | r19.2z 4495 | . . . . . 6
⊢ ((𝐹 ≠ ∅ ∧
∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) → ∃𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) | 
| 5 | 4 | ex 412 | . . . . 5
⊢ (𝐹 ≠ ∅ →
(∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) | 
| 6 | 3, 5 | syl 17 | . . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) | 
| 7 |  | topontop 22919 | . . . . . . . . 9
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | 
| 8 | 7 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ 𝐹) → 𝐽 ∈ Top) | 
| 9 |  | filelss 23860 | . . . . . . . . . 10
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠 ∈ 𝐹) → 𝑠 ⊆ 𝑋) | 
| 10 | 9 | adantll 714 | . . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ 𝐹) → 𝑠 ⊆ 𝑋) | 
| 11 |  | toponuni 22920 | . . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | 
| 12 | 11 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ 𝐹) → 𝑋 = ∪ 𝐽) | 
| 13 | 10, 12 | sseqtrd 4020 | . . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ 𝐹) → 𝑠 ⊆ ∪ 𝐽) | 
| 14 |  | eqid 2737 | . . . . . . . . 9
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 15 | 14 | clsss3 23067 | . . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑠 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑠) ⊆ ∪ 𝐽) | 
| 16 | 8, 13, 15 | syl2anc 584 | . . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ 𝐹) → ((cls‘𝐽)‘𝑠) ⊆ ∪ 𝐽) | 
| 17 | 16, 12 | sseqtrrd 4021 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ 𝐹) → ((cls‘𝐽)‘𝑠) ⊆ 𝑋) | 
| 18 | 17 | sseld 3982 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ 𝐹) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ 𝑋)) | 
| 19 | 18 | rexlimdva 3155 | . . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∃𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ 𝑋)) | 
| 20 | 6, 19 | syld 47 | . . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ 𝑋)) | 
| 21 | 20 | pm4.71rd 562 | . 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))) | 
| 22 | 7 | ad3antrrr 730 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑠 ∈ 𝐹) → 𝐽 ∈ Top) | 
| 23 | 13 | adantlr 715 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑠 ∈ 𝐹) → 𝑠 ⊆ ∪ 𝐽) | 
| 24 |  | simplr 769 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑠 ∈ 𝐹) → 𝐴 ∈ 𝑋) | 
| 25 | 11 | ad3antrrr 730 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑠 ∈ 𝐹) → 𝑋 = ∪ 𝐽) | 
| 26 | 24, 25 | eleqtrd 2843 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑠 ∈ 𝐹) → 𝐴 ∈ ∪ 𝐽) | 
| 27 | 14 | elcls 23081 | . . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑠 ⊆ ∪ 𝐽
∧ 𝐴 ∈ ∪ 𝐽)
→ (𝐴 ∈
((cls‘𝐽)‘𝑠) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → (𝑜 ∩ 𝑠) ≠ ∅))) | 
| 28 | 22, 23, 26, 27 | syl3anc 1373 | . . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑠 ∈ 𝐹) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → (𝑜 ∩ 𝑠) ≠ ∅))) | 
| 29 | 28 | ralbidva 3176 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑠 ∈ 𝐹 ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → (𝑜 ∩ 𝑠) ≠ ∅))) | 
| 30 |  | ralcom 3289 | . . . . 5
⊢
(∀𝑠 ∈
𝐹 ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → (𝑜 ∩ 𝑠) ≠ ∅) ↔ ∀𝑜 ∈ 𝐽 ∀𝑠 ∈ 𝐹 (𝐴 ∈ 𝑜 → (𝑜 ∩ 𝑠) ≠ ∅)) | 
| 31 |  | r19.21v 3180 | . . . . . 6
⊢
(∀𝑠 ∈
𝐹 (𝐴 ∈ 𝑜 → (𝑜 ∩ 𝑠) ≠ ∅) ↔ (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)) | 
| 32 | 31 | ralbii 3093 | . . . . 5
⊢
(∀𝑜 ∈
𝐽 ∀𝑠 ∈ 𝐹 (𝐴 ∈ 𝑜 → (𝑜 ∩ 𝑠) ≠ ∅) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)) | 
| 33 | 30, 32 | bitri 275 | . . . 4
⊢
(∀𝑠 ∈
𝐹 ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → (𝑜 ∩ 𝑠) ≠ ∅) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)) | 
| 34 | 29, 33 | bitrdi 287 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴 ∈ 𝑋) → (∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅))) | 
| 35 | 34 | pm5.32da 579 | . 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴 ∈ 𝑋 ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) | 
| 36 | 1, 21, 35 | 3bitrd 305 | 1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) |