MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsopn Structured version   Visualization version   GIF version

Theorem fclsopn 23838
Description: Write the cluster point condition in terms of open sets. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsopn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝑜,𝐹,𝑠   𝑜,𝐽,𝑠   𝑜,𝑋,𝑠

Proof of Theorem fclsopn
StepHypRef Expression
1 isfcls2 23837 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
2 filn0 23686 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
32adantl 481 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ≠ ∅)
4 r19.2z 4494 . . . . . 6 ((𝐹 ≠ ∅ ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))
54ex 412 . . . . 5 (𝐹 ≠ ∅ → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
63, 5syl 17 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
7 topontop 22735 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
87ad2antrr 723 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝐽 ∈ Top)
9 filelss 23676 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠𝑋)
109adantll 711 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑠𝑋)
11 toponuni 22736 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1211ad2antrr 723 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑋 = 𝐽)
1310, 12sseqtrd 4022 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑠 𝐽)
14 eqid 2731 . . . . . . . . 9 𝐽 = 𝐽
1514clsss3 22883 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑠 𝐽) → ((cls‘𝐽)‘𝑠) ⊆ 𝐽)
168, 13, 15syl2anc 583 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → ((cls‘𝐽)‘𝑠) ⊆ 𝐽)
1716, 12sseqtrrd 4023 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → ((cls‘𝐽)‘𝑠) ⊆ 𝑋)
1817sseld 3981 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
1918rexlimdva 3154 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
206, 19syld 47 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
2120pm4.71rd 562 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ (𝐴𝑋 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
227ad3antrrr 727 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐽 ∈ Top)
2313adantlr 712 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝑠 𝐽)
24 simplr 766 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐴𝑋)
2511ad3antrrr 727 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝑋 = 𝐽)
2624, 25eleqtrd 2834 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐴 𝐽)
2714elcls 22897 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑠 𝐽𝐴 𝐽) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
2822, 23, 26, 27syl3anc 1370 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
2928ralbidva 3174 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
30 ralcom 3285 . . . . 5 (∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅))
31 r19.21v 3178 . . . . . 6 (∀𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3231ralbii 3092 . . . . 5 (∀𝑜𝐽𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3330, 32bitri 275 . . . 4 (∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3429, 33bitrdi 287 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
3534pm5.32da 578 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
361, 21, 353bitrd 305 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069  cin 3947  wss 3948  c0 4322   cuni 4908  cfv 6543  (class class class)co 7412  Topctop 22715  TopOnctopon 22732  clsccl 22842  Filcfil 23669   fClus cfcls 23760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-fbas 21230  df-top 22716  df-topon 22733  df-cld 22843  df-ntr 22844  df-cls 22845  df-fil 23670  df-fcls 23765
This theorem is referenced by:  fclsopni  23839  fclselbas  23840  fclsnei  23843  fclsbas  23845  fclsss1  23846  fclsrest  23848  fclscf  23849  isfcf  23858
  Copyright terms: Public domain W3C validator