MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsopn Structured version   Visualization version   GIF version

Theorem fclsopn 22616
Description: Write the cluster point condition in terms of open sets. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsopn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝑜,𝐹,𝑠   𝑜,𝐽,𝑠   𝑜,𝑋,𝑠

Proof of Theorem fclsopn
StepHypRef Expression
1 isfcls2 22615 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
2 filn0 22464 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
32adantl 484 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ≠ ∅)
4 r19.2z 4440 . . . . . 6 ((𝐹 ≠ ∅ ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))
54ex 415 . . . . 5 (𝐹 ≠ ∅ → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
63, 5syl 17 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
7 topontop 21515 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
87ad2antrr 724 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝐽 ∈ Top)
9 filelss 22454 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑠𝐹) → 𝑠𝑋)
109adantll 712 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑠𝑋)
11 toponuni 21516 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1211ad2antrr 724 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑋 = 𝐽)
1310, 12sseqtrd 4007 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → 𝑠 𝐽)
14 eqid 2821 . . . . . . . . 9 𝐽 = 𝐽
1514clsss3 21661 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑠 𝐽) → ((cls‘𝐽)‘𝑠) ⊆ 𝐽)
168, 13, 15syl2anc 586 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → ((cls‘𝐽)‘𝑠) ⊆ 𝐽)
1716, 12sseqtrrd 4008 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → ((cls‘𝐽)‘𝑠) ⊆ 𝑋)
1817sseld 3966 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠𝐹) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
1918rexlimdva 3284 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
206, 19syld 47 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴𝑋))
2120pm4.71rd 565 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ (𝐴𝑋 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
227ad3antrrr 728 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐽 ∈ Top)
2313adantlr 713 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝑠 𝐽)
24 simplr 767 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐴𝑋)
2511ad3antrrr 728 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝑋 = 𝐽)
2624, 25eleqtrd 2915 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → 𝐴 𝐽)
2714elcls 21675 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑠 𝐽𝐴 𝐽) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
2822, 23, 26, 27syl3anc 1367 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑠𝐹) → (𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
2928ralbidva 3196 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅)))
30 ralcom 3354 . . . . 5 (∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅))
31 r19.21v 3175 . . . . . 6 (∀𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3231ralbii 3165 . . . . 5 (∀𝑜𝐽𝑠𝐹 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3330, 32bitri 277 . . . 4 (∀𝑠𝐹𝑜𝐽 (𝐴𝑜 → (𝑜𝑠) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))
3429, 33syl6bb 289 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
3534pm5.32da 581 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
361, 21, 353bitrd 307 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  cin 3935  wss 3936  c0 4291   cuni 4832  cfv 6350  (class class class)co 7150  Topctop 21495  TopOnctopon 21512  clsccl 21620  Filcfil 22447   fClus cfcls 22538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-fbas 20536  df-top 21496  df-topon 21513  df-cld 21621  df-ntr 21622  df-cls 21623  df-fil 22448  df-fcls 22543
This theorem is referenced by:  fclsopni  22617  fclselbas  22618  fclsnei  22621  fclsbas  22623  fclsss1  22624  fclsrest  22626  fclscf  22627  isfcf  22636
  Copyright terms: Public domain W3C validator