MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filtop Structured version   Visualization version   GIF version

Theorem filtop 22914
Description: The underlying set belongs to the filter. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filtop (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)

Proof of Theorem filtop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 filfbas 22907 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbasne0 22889 . . 3 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅)
31, 2syl 17 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
4 n0 4277 . . 3 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
5 filelss 22911 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑥𝑋)
6 ssid 3939 . . . . . . 7 𝑋𝑋
7 filss 22912 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑋𝑋𝑥𝑋)) → 𝑋𝐹)
873exp2 1352 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑋𝑋 → (𝑥𝑋𝑋𝐹))))
98imp 406 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → (𝑋𝑋 → (𝑥𝑋𝑋𝐹)))
106, 9mpi 20 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → (𝑥𝑋𝑋𝐹))
115, 10mpd 15 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑋𝐹)
1211ex 412 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹𝑋𝐹))
1312exlimdv 1937 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∃𝑥 𝑥𝐹𝑋𝐹))
144, 13syl5bi 241 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ≠ ∅ → 𝑋𝐹))
153, 14mpd 15 1 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  wcel 2108  wne 2942  wss 3883  c0 4253  cfv 6418  fBascfbas 20498  Filcfil 22904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-fbas 20507  df-fil 22905
This theorem is referenced by:  isfil2  22915  filn0  22921  infil  22922  filunibas  22940  filuni  22944  trfil1  22945  trfil2  22946  fgtr  22949  trfg  22950  isufil2  22967  filssufil  22971  ssufl  22977  ufileu  22978  filufint  22979  uffixfr  22982  cfinufil  22987  rnelfmlem  23011  rnelfm  23012  fmfnfmlem1  23013  fmfnfmlem2  23014  fmfnfmlem4  23016  fmfnfm  23017  flfval  23049  fclsfnflim  23086  flimfnfcls  23087  fcfval  23092  alexsublem  23103  metust  23620  cmetss  24385  minveclem4a  24499  filnetlem3  34496  filnetlem4  34497
  Copyright terms: Public domain W3C validator