Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > filtop | Structured version Visualization version GIF version |
Description: The underlying set belongs to the filter. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
filtop | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filfbas 22980 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
2 | fbasne0 22962 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) |
4 | n0 4285 | . . 3 ⊢ (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐹) | |
5 | filelss 22984 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝑋) | |
6 | ssid 3947 | . . . . . . 7 ⊢ 𝑋 ⊆ 𝑋 | |
7 | filss 22985 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑋 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋)) → 𝑋 ∈ 𝐹) | |
8 | 7 | 3exp2 1352 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → (𝑋 ⊆ 𝑋 → (𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹)))) |
9 | 8 | imp 406 | . . . . . . 7 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → (𝑋 ⊆ 𝑋 → (𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹))) |
10 | 6, 9 | mpi 20 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → (𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹)) |
11 | 5, 10 | mpd 15 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → 𝑋 ∈ 𝐹) |
12 | 11 | ex 412 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → 𝑋 ∈ 𝐹)) |
13 | 12 | exlimdv 1939 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑥 𝑥 ∈ 𝐹 → 𝑋 ∈ 𝐹)) |
14 | 4, 13 | syl5bi 241 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ≠ ∅ → 𝑋 ∈ 𝐹)) |
15 | 3, 14 | mpd 15 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1785 ∈ wcel 2109 ≠ wne 2944 ⊆ wss 3891 ∅c0 4261 ‘cfv 6430 fBascfbas 20566 Filcfil 22977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fv 6438 df-fbas 20575 df-fil 22978 |
This theorem is referenced by: isfil2 22988 filn0 22994 infil 22995 filunibas 23013 filuni 23017 trfil1 23018 trfil2 23019 fgtr 23022 trfg 23023 isufil2 23040 filssufil 23044 ssufl 23050 ufileu 23051 filufint 23052 uffixfr 23055 cfinufil 23060 rnelfmlem 23084 rnelfm 23085 fmfnfmlem1 23086 fmfnfmlem2 23087 fmfnfmlem4 23089 fmfnfm 23090 flfval 23122 fclsfnflim 23159 flimfnfcls 23160 fcfval 23165 alexsublem 23176 metust 23695 cmetss 24461 minveclem4a 24575 filnetlem3 34548 filnetlem4 34549 |
Copyright terms: Public domain | W3C validator |