MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filtop Structured version   Visualization version   GIF version

Theorem filtop 22067
Description: The underlying set belongs to the filter. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filtop (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)

Proof of Theorem filtop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 filfbas 22060 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbasne0 22042 . . 3 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅)
31, 2syl 17 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
4 n0 4159 . . 3 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
5 filelss 22064 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑥𝑋)
6 ssid 3842 . . . . . . 7 𝑋𝑋
7 filss 22065 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑋𝑋𝑥𝑋)) → 𝑋𝐹)
873exp2 1416 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑋𝑋 → (𝑥𝑋𝑋𝐹))))
98imp 397 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → (𝑋𝑋 → (𝑥𝑋𝑋𝐹)))
106, 9mpi 20 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → (𝑥𝑋𝑋𝐹))
115, 10mpd 15 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑋𝐹)
1211ex 403 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹𝑋𝐹))
1312exlimdv 1976 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∃𝑥 𝑥𝐹𝑋𝐹))
144, 13syl5bi 234 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ≠ ∅ → 𝑋𝐹))
153, 14mpd 15 1 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wex 1823  wcel 2107  wne 2969  wss 3792  c0 4141  cfv 6135  fBascfbas 20130  Filcfil 22057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fv 6143  df-fbas 20139  df-fil 22058
This theorem is referenced by:  isfil2  22068  filn0  22074  infil  22075  filunibas  22093  filuni  22097  trfil1  22098  trfil2  22099  fgtr  22102  trfg  22103  isufil2  22120  filssufil  22124  ssufl  22130  ufileu  22131  filufint  22132  uffixfr  22135  cfinufil  22140  rnelfmlem  22164  rnelfm  22165  fmfnfmlem1  22166  fmfnfmlem2  22167  fmfnfmlem4  22169  fmfnfm  22170  flfval  22202  fclsfnflim  22239  flimfnfcls  22240  fcfval  22245  alexsublem  22256  metust  22771  cmetss  23522  minveclem4a  23636  filnetlem3  32963  filnetlem4  32964
  Copyright terms: Public domain W3C validator