| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > filtop | Structured version Visualization version GIF version | ||
| Description: The underlying set belongs to the filter. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
| Ref | Expression |
|---|---|
| filtop | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas 23763 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
| 2 | fbasne0 23745 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) |
| 4 | n0 4300 | . . 3 ⊢ (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐹) | |
| 5 | filelss 23767 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝑋) | |
| 6 | ssid 3952 | . . . . . . 7 ⊢ 𝑋 ⊆ 𝑋 | |
| 7 | filss 23768 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑋 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋)) → 𝑋 ∈ 𝐹) | |
| 8 | 7 | 3exp2 1355 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → (𝑋 ⊆ 𝑋 → (𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹)))) |
| 9 | 8 | imp 406 | . . . . . . 7 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → (𝑋 ⊆ 𝑋 → (𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹))) |
| 10 | 6, 9 | mpi 20 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → (𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹)) |
| 11 | 5, 10 | mpd 15 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → 𝑋 ∈ 𝐹) |
| 12 | 11 | ex 412 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → 𝑋 ∈ 𝐹)) |
| 13 | 12 | exlimdv 1934 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑥 𝑥 ∈ 𝐹 → 𝑋 ∈ 𝐹)) |
| 14 | 4, 13 | biimtrid 242 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ≠ ∅ → 𝑋 ∈ 𝐹)) |
| 15 | 3, 14 | mpd 15 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 ∅c0 4280 ‘cfv 6481 fBascfbas 21279 Filcfil 23760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-fbas 21288 df-fil 23761 |
| This theorem is referenced by: isfil2 23771 filn0 23777 infil 23778 filunibas 23796 filuni 23800 trfil1 23801 trfil2 23802 fgtr 23805 trfg 23806 isufil2 23823 filssufil 23827 ssufl 23833 ufileu 23834 filufint 23835 uffixfr 23838 cfinufil 23843 rnelfmlem 23867 rnelfm 23868 fmfnfmlem1 23869 fmfnfmlem2 23870 fmfnfmlem4 23872 fmfnfm 23873 flfval 23905 fclsfnflim 23942 flimfnfcls 23943 fcfval 23948 alexsublem 23959 metust 24473 cmetss 25243 minveclem4a 25357 filnetlem3 36424 filnetlem4 36425 |
| Copyright terms: Public domain | W3C validator |