![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > filtop | Structured version Visualization version GIF version |
Description: The underlying set belongs to the filter. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
filtop | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filfbas 23572 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
2 | fbasne0 23554 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) |
4 | n0 4345 | . . 3 ⊢ (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐹) | |
5 | filelss 23576 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝑋) | |
6 | ssid 4003 | . . . . . . 7 ⊢ 𝑋 ⊆ 𝑋 | |
7 | filss 23577 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑋 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋)) → 𝑋 ∈ 𝐹) | |
8 | 7 | 3exp2 1352 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → (𝑋 ⊆ 𝑋 → (𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹)))) |
9 | 8 | imp 405 | . . . . . . 7 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → (𝑋 ⊆ 𝑋 → (𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹))) |
10 | 6, 9 | mpi 20 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → (𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹)) |
11 | 5, 10 | mpd 15 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → 𝑋 ∈ 𝐹) |
12 | 11 | ex 411 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → 𝑋 ∈ 𝐹)) |
13 | 12 | exlimdv 1934 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑥 𝑥 ∈ 𝐹 → 𝑋 ∈ 𝐹)) |
14 | 4, 13 | biimtrid 241 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ≠ ∅ → 𝑋 ∈ 𝐹)) |
15 | 3, 14 | mpd 15 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∃wex 1779 ∈ wcel 2104 ≠ wne 2938 ⊆ wss 3947 ∅c0 4321 ‘cfv 6542 fBascfbas 21132 Filcfil 23569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fv 6550 df-fbas 21141 df-fil 23570 |
This theorem is referenced by: isfil2 23580 filn0 23586 infil 23587 filunibas 23605 filuni 23609 trfil1 23610 trfil2 23611 fgtr 23614 trfg 23615 isufil2 23632 filssufil 23636 ssufl 23642 ufileu 23643 filufint 23644 uffixfr 23647 cfinufil 23652 rnelfmlem 23676 rnelfm 23677 fmfnfmlem1 23678 fmfnfmlem2 23679 fmfnfmlem4 23681 fmfnfm 23682 flfval 23714 fclsfnflim 23751 flimfnfcls 23752 fcfval 23757 alexsublem 23768 metust 24287 cmetss 25064 minveclem4a 25178 filnetlem3 35568 filnetlem4 35569 |
Copyright terms: Public domain | W3C validator |