MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filtop Structured version   Visualization version   GIF version

Theorem filtop 23740
Description: The underlying set belongs to the filter. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filtop (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)

Proof of Theorem filtop
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 filfbas 23733 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbasne0 23715 . . 3 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅)
31, 2syl 17 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
4 n0 4304 . . 3 (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥𝐹)
5 filelss 23737 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑥𝑋)
6 ssid 3958 . . . . . . 7 𝑋𝑋
7 filss 23738 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑋𝑋𝑥𝑋)) → 𝑋𝐹)
873exp2 1355 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑋𝑋 → (𝑥𝑋𝑋𝐹))))
98imp 406 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → (𝑋𝑋 → (𝑥𝑋𝑋𝐹)))
106, 9mpi 20 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → (𝑥𝑋𝑋𝐹))
115, 10mpd 15 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑋𝐹)
1211ex 412 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹𝑋𝐹))
1312exlimdv 1933 . . 3 (𝐹 ∈ (Fil‘𝑋) → (∃𝑥 𝑥𝐹𝑋𝐹))
144, 13biimtrid 242 . 2 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ≠ ∅ → 𝑋𝐹))
153, 14mpd 15 1 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wne 2925  wss 3903  c0 4284  cfv 6482  fBascfbas 21249  Filcfil 23730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fv 6490  df-fbas 21258  df-fil 23731
This theorem is referenced by:  isfil2  23741  filn0  23747  infil  23748  filunibas  23766  filuni  23770  trfil1  23771  trfil2  23772  fgtr  23775  trfg  23776  isufil2  23793  filssufil  23797  ssufl  23803  ufileu  23804  filufint  23805  uffixfr  23808  cfinufil  23813  rnelfmlem  23837  rnelfm  23838  fmfnfmlem1  23839  fmfnfmlem2  23840  fmfnfmlem4  23842  fmfnfm  23843  flfval  23875  fclsfnflim  23912  flimfnfcls  23913  fcfval  23918  alexsublem  23929  metust  24444  cmetss  25214  minveclem4a  25328  filnetlem3  36358  filnetlem4  36359
  Copyright terms: Public domain W3C validator