MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfi Structured version   Visualization version   GIF version

Theorem elfi 9412
Description: Specific properties of an element of (fi‘𝐵). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
elfi ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝑥,𝑊

Proof of Theorem elfi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fival 9411 . . 3 (𝐵𝑊 → (fi‘𝐵) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = 𝑥})
21eleq2d 2817 . 2 (𝐵𝑊 → (𝐴 ∈ (fi‘𝐵) ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = 𝑥}))
3 eqeq1 2734 . . . 4 (𝑦 = 𝐴 → (𝑦 = 𝑥𝐴 = 𝑥))
43rexbidv 3176 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
54elabg 3667 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = 𝑥} ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
62, 5sylan9bbr 509 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  {cab 2707  wrex 3068  cin 3948  𝒫 cpw 4603   cint 4951  cfv 6544  Fincfn 8943  ficfi 9409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-fi 9410
This theorem is referenced by:  elfi2  9413  elfir  9414  inelfi  9417  fiin  9421  dffi2  9422  elfiun  9429  subbascn  22980  cmpfi  23134  fbasfip  23594  alexsubALTlem4  23776  zarcmplem  33157  heibor1lem  36982  elrfi  41736
  Copyright terms: Public domain W3C validator