| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfi | Structured version Visualization version GIF version | ||
| Description: Specific properties of an element of (fi‘𝐵). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| elfi | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = ∩ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fival 9291 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (fi‘𝐵) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = ∩ 𝑥}) | |
| 2 | 1 | eleq2d 2817 | . 2 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ∈ (fi‘𝐵) ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = ∩ 𝑥})) |
| 3 | eqeq1 2735 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 = ∩ 𝑥 ↔ 𝐴 = ∩ 𝑥)) | |
| 4 | 3 | rexbidv 3156 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = ∩ 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = ∩ 𝑥)) |
| 5 | 4 | elabg 3627 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = ∩ 𝑥} ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = ∩ 𝑥)) |
| 6 | 2, 5 | sylan9bbr 510 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = ∩ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 ∩ cin 3896 𝒫 cpw 4545 ∩ cint 4892 ‘cfv 6476 Fincfn 8864 ficfi 9289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-fi 9290 |
| This theorem is referenced by: elfi2 9293 elfir 9294 inelfi 9297 fiin 9301 dffi2 9302 elfiun 9309 subbascn 23164 cmpfi 23318 fbasfip 23778 alexsubALTlem4 23960 zarcmplem 33886 heibor1lem 37849 elrfi 42727 |
| Copyright terms: Public domain | W3C validator |