MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfi Structured version   Visualization version   GIF version

Theorem elfi 9453
Description: Specific properties of an element of (fi‘𝐵). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
elfi ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝑥,𝑊

Proof of Theorem elfi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fival 9452 . . 3 (𝐵𝑊 → (fi‘𝐵) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = 𝑥})
21eleq2d 2827 . 2 (𝐵𝑊 → (𝐴 ∈ (fi‘𝐵) ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = 𝑥}))
3 eqeq1 2741 . . . 4 (𝑦 = 𝐴 → (𝑦 = 𝑥𝐴 = 𝑥))
43rexbidv 3179 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
54elabg 3676 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = 𝑥} ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
62, 5sylan9bbr 510 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2714  wrex 3070  cin 3950  𝒫 cpw 4600   cint 4946  cfv 6561  Fincfn 8985  ficfi 9450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-fi 9451
This theorem is referenced by:  elfi2  9454  elfir  9455  inelfi  9458  fiin  9462  dffi2  9463  elfiun  9470  subbascn  23262  cmpfi  23416  fbasfip  23876  alexsubALTlem4  24058  zarcmplem  33880  heibor1lem  37816  elrfi  42705
  Copyright terms: Public domain W3C validator