| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnhomeqhomf | Structured version Visualization version GIF version | ||
| Description: If the Hom-set operation is a function it is equal to the corresponding functionalized Hom-set operation. (Contributed by AV, 1-Mar-2020.) |
| Ref | Expression |
|---|---|
| homffval.f | ⊢ 𝐹 = (Homf ‘𝐶) |
| homffval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homffval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| fnhomeqhomf | ⊢ (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnov 7483 | . 2 ⊢ (𝐻 Fn (𝐵 × 𝐵) ↔ 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) | |
| 2 | homffval.f | . . . 4 ⊢ 𝐹 = (Homf ‘𝐶) | |
| 3 | homffval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | homffval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 5 | 2, 3, 4 | homffval 17602 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
| 6 | eqeq2 2743 | . . 3 ⊢ (𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) → (𝐹 = 𝐻 ↔ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)))) | |
| 7 | 5, 6 | mpbiri 258 | . 2 ⊢ (𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) → 𝐹 = 𝐻) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 × cxp 5617 Fn wfn 6482 ‘cfv 6487 (class class class)co 7352 ∈ cmpo 7354 Basecbs 17126 Hom chom 17178 Homf chomf 17578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-homf 17582 |
| This theorem is referenced by: estrchomfeqhom 18048 rngchomfeqhom 20546 ringchomfeqhom 20575 rngchomffvalALTV 48383 |
| Copyright terms: Public domain | W3C validator |