MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnhomeqhomf Structured version   Visualization version   GIF version

Theorem fnhomeqhomf 17603
Description: If the Hom-set operation is a function it is equal to the corresponding functionalized Hom-set operation. (Contributed by AV, 1-Mar-2020.)
Hypotheses
Ref Expression
homffval.f 𝐹 = (Homf𝐶)
homffval.b 𝐵 = (Base‘𝐶)
homffval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
fnhomeqhomf (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻)

Proof of Theorem fnhomeqhomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnov 7483 . 2 (𝐻 Fn (𝐵 × 𝐵) ↔ 𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
2 homffval.f . . . 4 𝐹 = (Homf𝐶)
3 homffval.b . . . 4 𝐵 = (Base‘𝐶)
4 homffval.h . . . 4 𝐻 = (Hom ‘𝐶)
52, 3, 4homffval 17602 . . 3 𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
6 eqeq2 2743 . . 3 (𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) → (𝐹 = 𝐻𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))))
75, 6mpbiri 258 . 2 (𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) → 𝐹 = 𝐻)
81, 7sylbi 217 1 (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   × cxp 5617   Fn wfn 6482  cfv 6487  (class class class)co 7352  cmpo 7354  Basecbs 17126  Hom chom 17178  Homf chomf 17578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-homf 17582
This theorem is referenced by:  estrchomfeqhom  18048  rngchomfeqhom  20546  ringchomfeqhom  20575  rngchomffvalALTV  48383
  Copyright terms: Public domain W3C validator