![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnhomeqhomf | Structured version Visualization version GIF version |
Description: If the Hom-set operation is a function it is equal to the corresponding functionalized Hom-set operation. (Contributed by AV, 1-Mar-2020.) |
Ref | Expression |
---|---|
homffval.f | ⊢ 𝐹 = (Homf ‘𝐶) |
homffval.b | ⊢ 𝐵 = (Base‘𝐶) |
homffval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
fnhomeqhomf | ⊢ (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnov 7002 | . 2 ⊢ (𝐻 Fn (𝐵 × 𝐵) ↔ 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) | |
2 | homffval.f | . . . 4 ⊢ 𝐹 = (Homf ‘𝐶) | |
3 | homffval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | homffval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
5 | 2, 3, 4 | homffval 16664 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
6 | eqeq2 2810 | . . 3 ⊢ (𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) → (𝐹 = 𝐻 ↔ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)))) | |
7 | 5, 6 | mpbiri 250 | . 2 ⊢ (𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) → 𝐹 = 𝐻) |
8 | 1, 7 | sylbi 209 | 1 ⊢ (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 × cxp 5310 Fn wfn 6096 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 Basecbs 16184 Hom chom 16278 Homf chomf 16641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-homf 16645 |
This theorem is referenced by: estrchomfeqhom 17090 rngchomfeqhom 42768 rngchomffvalALTV 42794 ringchomfeqhom 42814 |
Copyright terms: Public domain | W3C validator |