MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnhomeqhomf Structured version   Visualization version   GIF version

Theorem fnhomeqhomf 17635
Description: If the Hom-set operation is a function it is equal to the corresponding functionalized Hom-set operation. (Contributed by AV, 1-Mar-2020.)
Hypotheses
Ref Expression
homffval.f 𝐹 = (Homf𝐶)
homffval.b 𝐵 = (Base‘𝐶)
homffval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
fnhomeqhomf (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻)

Proof of Theorem fnhomeqhomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnov 7540 . 2 (𝐻 Fn (𝐵 × 𝐵) ↔ 𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
2 homffval.f . . . 4 𝐹 = (Homf𝐶)
3 homffval.b . . . 4 𝐵 = (Base‘𝐶)
4 homffval.h . . . 4 𝐻 = (Hom ‘𝐶)
52, 3, 4homffval 17634 . . 3 𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
6 eqeq2 2745 . . 3 (𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) → (𝐹 = 𝐻𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))))
75, 6mpbiri 258 . 2 (𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) → 𝐹 = 𝐻)
81, 7sylbi 216 1 (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542   × cxp 5675   Fn wfn 6539  cfv 6544  (class class class)co 7409  cmpo 7411  Basecbs 17144  Hom chom 17208  Homf chomf 17610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-homf 17614
This theorem is referenced by:  estrchomfeqhom  18087  rngchomfeqhom  46867  rngchomffvalALTV  46893  ringchomfeqhom  46913
  Copyright terms: Public domain W3C validator