| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnhomeqhomf | Structured version Visualization version GIF version | ||
| Description: If the Hom-set operation is a function it is equal to the corresponding functionalized Hom-set operation. (Contributed by AV, 1-Mar-2020.) |
| Ref | Expression |
|---|---|
| homffval.f | ⊢ 𝐹 = (Homf ‘𝐶) |
| homffval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homffval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| fnhomeqhomf | ⊢ (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnov 7520 | . 2 ⊢ (𝐻 Fn (𝐵 × 𝐵) ↔ 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦))) | |
| 2 | homffval.f | . . . 4 ⊢ 𝐹 = (Homf ‘𝐶) | |
| 3 | homffval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | homffval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 5 | 2, 3, 4 | homffval 17651 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) |
| 6 | eqeq2 2741 | . . 3 ⊢ (𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) → (𝐹 = 𝐻 ↔ 𝐹 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)))) | |
| 7 | 5, 6 | mpbiri 258 | . 2 ⊢ (𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥𝐻𝑦)) → 𝐹 = 𝐻) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 × cxp 5636 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 Basecbs 17179 Hom chom 17231 Homf chomf 17627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-homf 17631 |
| This theorem is referenced by: estrchomfeqhom 18097 rngchomfeqhom 20534 ringchomfeqhom 20563 rngchomffvalALTV 48263 |
| Copyright terms: Public domain | W3C validator |