MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnhomeqhomf Structured version   Visualization version   GIF version

Theorem fnhomeqhomf 17400
Description: If the Hom-set operation is a function it is equal to the corresponding functionalized Hom-set operation. (Contributed by AV, 1-Mar-2020.)
Hypotheses
Ref Expression
homffval.f 𝐹 = (Homf𝐶)
homffval.b 𝐵 = (Base‘𝐶)
homffval.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
fnhomeqhomf (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻)

Proof of Theorem fnhomeqhomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnov 7405 . 2 (𝐻 Fn (𝐵 × 𝐵) ↔ 𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)))
2 homffval.f . . . 4 𝐹 = (Homf𝐶)
3 homffval.b . . . 4 𝐵 = (Base‘𝐶)
4 homffval.h . . . 4 𝐻 = (Hom ‘𝐶)
52, 3, 4homffval 17399 . . 3 𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))
6 eqeq2 2750 . . 3 (𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) → (𝐹 = 𝐻𝐹 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦))))
75, 6mpbiri 257 . 2 (𝐻 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥𝐻𝑦)) → 𝐹 = 𝐻)
81, 7sylbi 216 1 (𝐻 Fn (𝐵 × 𝐵) → 𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   × cxp 5587   Fn wfn 6428  cfv 6433  (class class class)co 7275  cmpo 7277  Basecbs 16912  Hom chom 16973  Homf chomf 17375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-homf 17379
This theorem is referenced by:  estrchomfeqhom  17852  rngchomfeqhom  45527  rngchomffvalALTV  45553  ringchomfeqhom  45573
  Copyright terms: Public domain W3C validator